Perspective: Fifty years of density-functional theory in chemical physics

Axel D. Becke
Department of Chemistry, Dalhousie University, 6274 Coburg Rd., P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada

(Received 21 January 2014; accepted 13 March 2014; published online 1 April 2014)

Since its formal inception in 1964–1965, Kohn-Sham density-functional theory (KS-DFT) has become the most popular electronic structure method in computational physics and chemistry. Its popularity stems from its beautifully simple conceptual framework and computational elegance. The rise of KS-DFT in chemical physics began in earnest in the mid 1980s, when crucial developments in its exchange-correlation term gave the theory predictive power competitive with well-developed wave-function methods. Today KS-DFT finds itself under increasing pressure to deliver higher and higher accuracy and to adapt to ever more challenging problems. If we are not mindful, however, these pressures may submerge the theory in the wave-function sea. KS-DFT might be lost. I am hopeful the Kohn-Sham philosophical, theoretical, and computational framework can be preserved. This Perspective outlines the history, basic concepts, and present status of KS-DFT in chemical physics, and offers suggestions for its future development. © 2014 AIP Publishing LLC.

I. INTRODUCTION

Density-functional theory (DFT) is a subtle, seductive, provocative business. Its basic premise, that all the intricate motions and pair correlations in a many-electron system are somehow contained in the total electron density alone, is so compelling it can drive one mad. I attended my first DFT conference in 1983, a two-week NATO workshop in Alcascibeche, Portugal.\(^1\) The intensity of the debates and the level of scientific excitement at the meeting were impressive. I was hooked. It was about ten years before DFT made its big splash in computational chemistry. The field was new.\(^2\) We were still finding our way.

The theoretical foundations had been laid by Hohenberg, Kohn, and Sham in 1964–1965\(^3,4\) but the formative years were \(~1980–2010\). An analysis of Web of Science citation data undertaken at Tulane University reveals that DFT was the most active field in physics during this thirty-year period.\(^5\) Of the top three most cited physicists,\(^6\) the first (Perdew: 65,757 citations) and third (Becke: 62,581 citations) were density-functional theorists. The second was Richard Smalley (63,354). The top three most cited physics papers,\(^7\) and eight of the top ten, were in the field of DFT. The Tulane analysis covers citations during, and to papers published within, the 1980–2010 window. The Hohenberg-Kohn-Sham (HKS) papers are therefore not included. Total citation counts for notable DFT papers, including the HKS papers, are shown in Table I, from Web of Science and Google Scholar as of January 1, 2014. The numbers speak for themselves, DFT is huge.

I will focus in this Perspective on the basic engine of Kohn-Sham DFT, the ground-state exchange-correlation functional, as it pertains to problems in chemical physics. I have been involved in its development since the “muffin-tin Xα” days of the late 1970s to the present and hopefully into the future. The narrative will have a historical and somewhat personal slant, but I intend for this article to be a teaching tool as well. Of course DFT is a much larger subject, and thankfully the recent Perspective of Burke\(^8\) provides a broader overview. Also the Perspective of Klimes and Michaelides\(^9\) on dispersion interactions in DFT is an excellent accompaniment.

The contributions to this special issue reflect the many colors of the modern DFT tapestry. It is all very good and increasingly powerful stuff. I wonder, however, if the heart and soul of Kohn-Sham DFT may be slipping from our grasp. Although it is not strictly so defined, I think KS-DFT is about occupied orbitals only (I hesitate to suggest the acronym “OOO”). Yet virtual orbitals are more and more being used: perturbation theory, random phase approximation, etc. My personal research philosophy has always been occupied orbitals only. It focuses the mind. It defines one’s path. It is what gave KS-DFT its popularity and a share of the 1998 Chemistry Nobel prize to Walter Kohn. Let us not give up on the original spirit of Kohn-Sham DFT. Here is my take on the first fifty years. We use atomic units throughout, where \(\hbar = m_e = e = 4\pi\varepsilon_0 = 1\).

II. IN THE BEGINNING

The intuitive origins of density-functional theory predate the seminal 1964–1965 Hohenberg-Kohn-Sham papers\(^1\)\(^-\)\(^4\) by many decades. Thomas,\(^10\) Fermi,\(^11\) and Dirac\(^12\) imagined that the kinetic and exchange energies of systems of many electrons could be locally modeled by their uniform electron gas energy densities. The result was an approximate theory of electronic structure (“TFD”) depending only on the total electronic density \(\rho(r)\). Though wonderfully simple, TFD fails qualitatively because it is unable to self-consistently reproduce atomic shell structure. Even with accurate input

\(^{a3}\)axel.becke@dal.ca
densities from other sources, TFD energies have errors of around 10%, too large for computational purposes. Furthermore, Teller deduced that Thomas-Fermi theory cannot bind molecules. TFD is useful for rough estimates of atomic properties only.

Shell structure is a consequence of the Pauli exclusion principle and, as such, arises from electron pairs in orthonormal orbitals arranged in Slater determinants. Hartree-Fock (HF) theory is the simplest realization. Given the Hamiltonian operator, \(H \), for \(N \) electrons in an external (nuclear) potential \(v_{\text{ext}} \):

\[
H = -\frac{1}{2} \sum_i \nabla_i^2 + v_{\text{ext}}(r_i) + \frac{1}{2} \sum_{ij} \frac{1}{|r_i - r_j|},
\]

we minimize the energy of a Slater determinant with respect to variations in the occupied spin orbitals \(\psi_{\sigma i} \). The result is the famous HF orbital equation

\[
-\frac{1}{2} \nabla^2 \psi_{\sigma i}(1) + v_{\text{ext}}(1) \psi_{\sigma i}(1) + v_{\sigma}(1) \psi_{\sigma i}(1)
- \sum_j \left[\int \frac{\psi_{\sigma j}^*(2) \psi_{\sigma j}(2)}{r_{12}} d^2 \right] \psi_{\sigma i}(1) = E_{\sigma i} \psi_{\sigma i}(1),
\]

\[
v_{\sigma}(1) = \int \frac{\rho(2)}{r_{12}} d^2, \quad \rho = \sum_\sigma \rho_{\sigma}, \quad \rho_{\sigma} = \int |\psi_{\sigma i}|^2 d^2,
\]

with the summation over \(j \) in the exchange term over orbitals of parallel spin only. The total HF energy is given by

\[
E_{\text{HF}} = -\frac{1}{2} \sum_\sigma \sum_i \int \psi_{\sigma i}^* \nabla^2 \psi_{\sigma i} + \int v_{\text{ext}} \rho
+ \frac{1}{2} \sum_\sigma \sum_i \int \frac{\rho(1) \rho(2)}{r_{12}} d^1 d^2 + E_X,
\]

\[
E_X = -\frac{1}{2} \sum_\sigma \sum_i \int \frac{1}{r_{12}} |\psi_{\sigma i}(1) \psi_{\sigma i}(2)|^2 d^1 d^2,
\]

where \(E_X \) is the Hartree-Fock exchange energy. The first three terms are the total kinetic energy, the interaction energy with the external potential, and the classical Coulomb self-interaction energy, respectively.

HF theory, while immensely more useful than TFD, is still not accurate enough for energy predictions in chemistry. Bond energies are significantly underestimated. Some molecules, \(\text{F}_2 \), for example, are not even bound at the Hartree-Fock level. Thus post-HF methods, adding to Hartree-Fock numerous other determinants involving excited or “virtual” orbitals, are generally required for viable chemical computations. Post-HF technology is well developed (see, e.g., Refs. 14 and 15 for overviews) and capable of very high accuracy, but the development and computational costs are severe. Simply put, it is complicated, and the computer-time scaling with system size \(N \) is several orders larger than for Hartree-Fock depending on the method (i.e., the formal scaling of HF is \(N^3 \), while post-HF methods scale like \(N^6 \) and higher as their sophistication increases). I will refer to HF and post-HF methods as wave-function methods, and the theory as wave-function theory (WFT). The more common terminology, \(\text{ab initio} \) theory, is regrettable as it denigrates density-functional theory. As we shall see in Secs. III and IV, DFT is as \(\text{ab initio} \) as WFT.

In the mid 1900s, computation of HF orbitals in condensed-matter systems was intractable. The problem is the orbital-dependent, nonlocal, exchange operator in Eq. (2). In 1951 Slater proposed a solution,\(^17\) the Hartree-Fock-Slater (HFS) method, which in many respects is the ancestor of modern DFT. He replaced the HF exchange operator with an orbital average, deriving the following multiplicative exchange potential,

\[
v_{\text{Slater}}^{\text{Slater}}(1) = -\frac{1}{\rho_{\sigma}(1)} \int \frac{1}{r_{12}} |\psi_{\sigma i}(1) \psi_{\sigma i}(2)|^2 d^2,
\]

known as the Slater potential. We will see it again and again in this paper.

Slater observed that \(v_{\text{Slater}}^{\text{Slater}}(1) \) is the Coulomb potential at \(r_1 \) of an exchange hole:

\[
h_{\sigma}(1, 2) = -\frac{1}{\rho_{\sigma}(1)} \int \frac{1}{r_{12}} |\psi_{\sigma i}(1) \psi_{\sigma i}(2)|^2 d^2,
\]

whose depth at \(r_2 = r_1 \) is \(-\rho_{\sigma}(1) \) and whose integrated charge is always \(-1\):

\[
\int h_{\sigma}(1, 2) d^2 = -1.
\]

This is easily proved using orthonormality of the orbitals. Then he modelled the spherical average of the hole, around \(r_1 \), as follows:

\[
h_{\sigma}(1, r_{12}) = -\rho_{\sigma}(1) f(a r_{12}),
\]

where \(f(x) \) is some reasonable shape profile (square well, Gaussian, hyperbolic secant, etc.) with \(f(0) = 1 \) and “\(a \)” is determined by the hole normalization condition Eq. (6). An exchange potential of the form

\[
v_{\text{Slater}}^{\text{Slater}} = -C_{\sigma} \rho_{\sigma}^{1/3}
\]

is obtained, where the constant \(C_{\sigma} \) depends on \(f(x) \) but is rather insensitive to its shape. If we choose for \(f(x) \) the exchange hole in the uniform electron gas (UEG), we obtain

\[
v_{\text{Slater}}^{\text{Slater}} = -\frac{3}{4} \frac{1}{4} \rho_{\sigma}^{1/3}.
\]

In modern DFT parlance this is, except for a factor 2/3, the exchange-only “local (spin) density approximation” (LDA).
Slater anticipated much of what was later to transpire in Kohn-Sham DFT. His last book,18 \textit{The Self-Consistent Field for Molecules and Solids}, is an excellent DFT introduction, though restricted to exchange only. Slater’s insights on the nature of the “hole,” in compact and extended systems, inspired me and many others to enter DFT. Particularly fascinating was that HFS bond energies were superior to HF bond energies.19 There was no clear underbinding or overbinding trend for HFS, and the errors were still unacceptably large, but this early victory over Hartree-Fock foreshadowed things to come.

III. THE BIRTH OF DENSITY-FUNCTIONAL THEORY

While intriguing in its simplicity and early successes, the Hartree-Fock-Slater method is a model, not a theory, of electronic structure. Where is dynamical correlation? Where is the correlation contribution to kinetic energy? HFS offers no answers to these questions. In their seminal 1964–1965 papers,3,4 Hohenberg, Kohn, and Sham founded the rigorous theory that finally legitimized the intuitive leaps of Thomas, Fermi, Dirac, and Slater. Thus, 1964 is widely accepted as the birth year of modern DFT.

It was established in the 1964 paper of Hohenberg and Kohn3 that the total electron density ρ completely and exactly determines all the (ground-state) properties of an N-electron system. Thus, ρ can be used as the fundamental “variable” in electronic structure theory. The much more complicated N-electron wave function is, in principle, superfluous. The logic is subtle. It goes something like this:

$$v_{\text{ext}} \rightarrow \Psi_0 \rightarrow \rho \quad \text{or} \quad v_{\text{ext}} \rightarrow \rho.$$ \hfill (10)

For a system of N interacting electrons in an external potential, v_{ext}, and hence governed by the Hamiltonian of Eq. (1), there is a unique ground-state wave function Ψ_0 and associated density ρ. If the mapping from v_{ext} to ρ is “one-to-one” or reversible (see Ref. 3 for the proof), then

$$\rho \rightarrow v_{\text{ext}} \rightarrow \Psi_0 \rightarrow \text{everything},$$ \hfill (11)

i.e., ρ uniquely determines v_{ext}, which has a unique Ψ_0, and thus in principle we know everything.

The above is not enough however. For the theory to be self-contained, we need a variational principle. Corresponding to the first and last terms in the Hamiltonian, Eq. (1), the terms that do not involve the external potential, there exists a density functional for the total kinetic + total Coulomb interaction energy:

$$F(\rho) = T(\rho) + V_{\text{ext}}(\rho).$$ \hfill (12)

From the WFT variational principle, it can be proved (see Ref. 3) that

$$F(\rho') + \int v_{\text{ext}} \rho' \geq F(\rho) + \int v_{\text{ext}} \rho = E_0,$$ \hfill (13)

where ρ' is not the ρ corresponding to v_{ext}, but to some other external potential, and E_0 is the exact ground-state energy. This is the Hohenberg-Kohn density variational principle. Note that the Hohenberg-Kohn proofs were restricted to nondegenerate ground states, and that the mapping of Eq. (11) inherently assumes “ν-representable” densities, a subset of all conceivable Fermion densities. The later “constrained search” approach of Levy20 relaxes this requirement.

That the functionals $T(\rho)$ and $V_{\text{ext}}(\rho)$ are known to exist does not imply that we can write them down! The requirement of ν-representability (or the looser Fermion representability in the approach of Levy) on the densities is an additional difficulty. Nonrepresentable variational densities will collapse to the same shell-structureless densities obtained in Thomas-Fermi-Dirac theory. A year later, Kohn and Sham addressed both of these problems.4

Consider a single Slater determinant of orthonormal orbitals ψ_i with total density

$$\rho = \sum_i |\psi_i|^2$$ \hfill (14)

and total kinetic energy

$$T_0 = -\frac{1}{2} \sum_i \int \psi_i^* \nabla^2 \psi_i,$$ \hfill (15)

where, for simplicity in this section and Sec. IV, we assume spin-neutral systems. A single Slater determinant connotes independent, noninteracting electrons. Nevertheless we presume that the density expression of Eq. (14) spans all possible N-electron densities, interacting or not. It is reasonable to assume that T_0 is a rather good approximation to $T(\rho)$ in the Hohenberg-Kohn energy functional $F(\rho)$. It is reasonable, also, to approximate $V_{\text{ext}}(\rho)$ by the classical Coulomb self energy

$$J(\rho) = \frac{1}{2} \int \frac{\rho(1) \rho(2)}{r_{12}} d1d2.$$ \hfill (16)

Kohn and Sham called the error made by these approximations the \textit{exchange-correlation} energy E_{XC}:

$$F(\rho) = T_0(\rho) + J(\rho) + E_{XC}.$$ \hfill (17)

or

$$E_{XC}(\rho) = T(\rho) + V_{\text{ext}}(\rho) - T_0(\rho) - J(\rho),$$

where T_0, by extension of the Hohenberg-Kohn analysis to noninteracting systems, is a density functional also, and therefore so is E_{XC}. Note that E_{XC} is composed of both kinetic and potential energies.

Collecting all the above, the Kohn-Sham total energy functional is

$$E(\rho) = T_0(\rho) + \int v_{\text{ext}} \rho + J(\rho) + E_{XC}(\rho).$$ \hfill (18)

The brilliance of this decomposition is that T_0 and J are given by exact expressions, Eqs. (15) and (16), and that the “unknown” functional, E_{XC}, is a relatively small part of the total. Variational minimization of Eq. (18) with respect to the orbitals ψ_i yields the Kohn-Sham (KS) orbital equation

$$-\frac{1}{2} \nabla^2 \psi_i + v_{KS} \psi_i = \epsilon_i \psi_i,$$ \hfill (19)

where v_{KS} is given by

$$v_{KS} = v_{\text{ext}} + v_{\text{el}} + \frac{\delta E_{XC}}{\delta \rho}.$$ \hfill (20)
and \(\frac{dE_{XC}}{d\rho} \) is the functional derivative of \(E_{XC} \) with respect to \(\rho \). The theory is now complete. Electrons in atoms, molecules, and solids can be viewed as independent particles, moving in the effective potential \(V_{KS} \).

Kohn-Sham DFT is astounding in its simplicity. It is operationally an independent-particle theory, simpler even than Hartree-Fock. Yet it delivers, in principle, the exact density \(\rho \). The LDA is seen to be a reasonable exchange and correlation energies, respectively, of noble-gas atoms with exact values. Slater’s HFS work \(\rho \) is known. In 1965, the quest for the holy grail of electronic structure began. In 1966, the quest for the holy grail of electronic structure began.

Kohn and Sham proposed a simple model for \(E_{XC} \), the so-called “local density approximation” (LDA):

\[
E_{XC}^{\text{LDA}} = \int e_{XC}^{\text{LDA}}(\rho) \, d\rho,
\]

where \(e_{XC}^{\text{LDA}}(\rho) \) is the exchange-correlation energy, per unit volume, of a uniform electron gas\(^{24-26}\) having the local value \(\rho(r) \) of the density. It is a reasonable first approximation, in the same vein as Thomas-Fermi-Dirac theory, certainly good for a very slowly varying \(\rho(r) \). It is surprisingly good for atoms and molecules too, for reasons discussed in Sec. IV. In Tables II and III we compare local (spin) density exchange and correlation energies, respectively, of noble-gas atoms with exact values. The LDA is seen to be a reasonable start.

IV. THE EXCHANGE-CORRELATION HOLE

For two decades after its birth, KS-DFT was relatively unknown in quantum chemistry. Slater’s HFS work\(^{24}\) predated the Hohenberg-Kohn-Sham papers, and, in combination with the “muffin tin” (or “scattered wave”) numerical implementation of Johnson,\(^{25}\) had acquired some momentum. HFS implementations using standard atom-centered basis sets,\(^{36,37}\) numerical atom-centered basis sets,\(^{38}\) and high-precision numerical grids\(^{19}\) were also under development. By the early 1980s, several reliable molecular HFS computer codes were up and running, but all this was largely ignored by the greater quantum chemistry community. The accuracy of the HFS model was no match for their well-established wave-function methods.

Solid-state physicists, on the other hand, made key advances in KS-DFT in its early decades. Reference 2 surveys the progress and literature of the period. Most importantly, a rigorous formula for the exchange-correlation energy \(E_{XC} \) in terms of quantum-mechanical pair density and an exchange-correlation “hole” was established in Refs. 29–33 (see also Refs. 34 and 35 for simpler derivations). It is called the “adiabatic connection” formula and its central role in KS-DFT cannot be overstated. Hohenberg, Kohn, and Sham proved the existence of \(E_{XC} \) but gave no prescription for finding it. The adiabatic connection provides the prescription. We outline the derivation in the paragraphs below.

Everything in Sec. III is formally rigorous. Yet there is an apparent “disconnect” between the interacting system with kinetic energy \(T \) and Coulomb interaction energy \(V_{C} \), and the noninteracting KS reference system, Eq. (19), with kinetic energy \(T_0 \) and no Coulomb interaction. The connection is that they have the same density. The disconnect is that they have different Hamiltonians. The Hamiltonian of the interacting system is given by Eq. (1). The Hamiltonian of the noninteracting system is given by

\[
H_{0} = \sum_{i} \left(-\frac{1}{2} \nabla_{i}^{2} + v_{0i} \right).
\]

where, for reasons we will see momentarily, \(v_{0i} \) is denoted instead by \(v_{0i} \). Now imagine a manifold of partially interacting systems, all having the same density, but with a Coulomb interaction of partial strength \(\lambda \):

\[
H_{\lambda} = \sum_{i} \left(\frac{1}{2} \nabla_{i}^{2} + v_{i} \right) + \lambda G,
\]

where, \(v_{i} \) is the external potential that delivers the density \(\rho \) in the system of interaction strength \(\lambda \). The Hamiltonians of the noninteracting KS reference system and the correlated “real” system are \(H_{0} \) and \(H_{\lambda} \), respectively, with \(v_{0} = v_{0KS} \) and \(v_{1} = v_{ext} \). At any given \(\lambda \), the system has an \(N \)-electron wave function \(\Psi_{\lambda} \) and a pair density \(P_{\lambda}^{2} (1, 2) \). It can be shown\(^{34,35}\) that

\[
E_{XC} = \frac{1}{2} \int \int \left[P_{\lambda}^{2}g(1, 2) - \rho(1)\rho(2) \right] d1d2,
\]

<table>
<thead>
<tr>
<th>Atom</th>
<th>Exact</th>
<th>LDA</th>
<th>B86</th>
<th>B86b</th>
<th>PW86</th>
<th>revPW86</th>
<th>PBE</th>
<th>BR</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-0.006</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ne</td>
<td>-0.042</td>
<td>-0.111</td>
<td>-0.057</td>
<td>-0.041</td>
<td>-0.041</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ar</td>
<td>-0.391</td>
<td>-0.740</td>
<td>-0.368</td>
<td>-0.368</td>
<td>-0.362</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kr</td>
<td>-0.726</td>
<td>-1.423</td>
<td>-0.730</td>
<td>-0.703</td>
<td>-0.728</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE III. Atomic correlation energies, in a.u. (computed using LDA orbitals). Exact,\(^{57}\) LDA,\(^{29}\) Stoll,\(^{34,35}\) PBE,\(^{30}\) B88c(BR).\(^{34,81}\)

<table>
<thead>
<tr>
<th>Atom</th>
<th>Exact</th>
<th>LDA</th>
<th>Stoll</th>
<th>PBE</th>
<th>B88c(BR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0</td>
<td>0</td>
<td>0.066</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>He</td>
<td>-0.042</td>
<td>-0.111</td>
<td>-0.057</td>
<td>-0.041</td>
<td>-0.041</td>
</tr>
<tr>
<td>Ne</td>
<td>-0.391</td>
<td>-0.740</td>
<td>-0.368</td>
<td>-0.368</td>
<td>-0.362</td>
</tr>
<tr>
<td>Ar</td>
<td>-0.726</td>
<td>-1.423</td>
<td>-0.730</td>
<td>-0.703</td>
<td>-0.728</td>
</tr>
</tbody>
</table>
where $P_{2}^{\text{avg}}(1, 2)$ is the coupling-strength averaged pair density:

$$P_{2}^{\text{avg}}(1, 2) = \int_{0}^{1} P_{2}(1, 2)d\lambda. \quad (25)$$

This is the “adiabatic (constant density) connection.” Equation (25) literally “connects” the KS independent-particle reference state with the fully interacting correlated state through a coupling-strength integration.

$P_{2}^{\text{avg}}(1, 2) - \rho(1)\rho(2)$ is the difference between the correlated pair density (λ-averaged) and the uncorrelated pair density. The difference in the associated conditional pair densities, obtained by dividing through by $\rho(1)$, is

$$h_{XC}(1, 2) = \frac{P_{2}^{\text{avg}}(1, 2)}{\rho(1)} - \rho(2), \quad (26)$$

and is called the exchange-correlation “hole.” For an electron at r_1, $h_{XC}(1, 2)$ measures the effects of exchange and correlation on the probability of finding another electron at r_2 with respect to the classical probability $\rho(2)$. In terms of the hole:

$$E_{XC} = \frac{1}{2} \int \frac{\rho(1)}{r_{12}^2} h_{XC}(1, 2)d1d2. \quad (27)$$

Since ρ is independent of λ, the hole too may be expressed as a coupling-strength average as follows:

$$h_{XC}(1, 2) = \int_{0}^{1} h_{XC}^\lambda(1, 2)d\lambda, \quad (28)$$

$$h_{XC}^\lambda(1, 2) = \frac{P_{2}^\lambda(1, 2)}{\rho(1)} - \rho(2).$$

At all coupling strengths the hole is normalized, at all points r_1, to -1 electron:

$$\int h_{XC}^\lambda(1, 2)d1 = -1, \quad \int h_{XC}(1, 2)d1 = -1. \quad (29)$$

This is a generalization of Slater’s exchange-hole normalization of Eq. (6).

These concepts are tremendously important. They will inform the development of exchange-correlation functionals throughout Secs. V–X. An immediate benefit is an understanding of how the local density approximation, Eq. (21), works as well as it does in atoms and molecules. Atoms and molecules, especially of small nuclear charge, do not resemble uniform electron gases even locally. However, the normalization condition, Eq. (29), on the exchange-correlation hole is universal. The same constraint applies to the exact hole, at any r_1 in an atom or molecule, as applies to the UEG model hole that replaces it in the LDA. The success of the LDA is therefore no surprise at all.

The hole at the noninteracting $\lambda = 0$ limit is of special interest. This is called the Kohn-Sham “exchange only” or “pure exchange” (or just “exchange”) limit since a noninteracting system has no correlation. The wave function of the noninteracting electrons is a Slater determinant, whose hole is given by the following exact formula:

$$h_{X}(1, 2) = -2 \frac{\sum_{\sigma} \psi_{\sigma}^{*}(1)\psi_{\sigma}(2)^{2}}{\rho(1)}, \quad (30)$$

and has the same normalization as in Eq. (29):

$$\int h_{X}(1, 2)d1 = -1. \quad (31)$$

This is the same exchange hole, Eq. (5), derived by Slater in 1951 by different means and for a different purpose [note, when comparing Eqs. (5) and (30), that in spin-neutral systems, as assumed in this section, $\rho = 2\rho_{0}$.]

The Kohn-Sham correlation hole is defined as the difference between the exchange-correlation hole and the exchange hole:

$$h_{C}(1, 2) = h_{XC}(1, 2) - h_{X}(1, 2). \quad (32)$$

Since both holes on the right contain -1 electron, the correlation hole has zero normalization:

$$\int h_{C}(1, 2)d1 = 0. \quad (33)$$

Partitioning of the exchange-correlation hole into exchange and correlation parts translates to the energy as well. We have

$$E_{XC} = E_{X} + E_{C}, \quad (34)$$

where E_{X} and E_{C} are related to their respective holes by [see Eq. (27)]

$$E_{X/C} = \frac{1}{2} \int \frac{\rho(1)}{r_{12}^2} h_{X/C}(1, 2)d1d2. \quad (35)$$

E_{X} is the exchange energy of the Slater determinant of the Kohn-Sham orbitals, and E_{C} is everything else. Because the correlation hole integrates to zero and the exchange hole integrates to $-\rho_{0}$, $|E_{C}|$ is significantly smaller than $|E_{X}|$. We have therefore swept the remaining and unknown correlation effects into an even smaller part of the Kohn-Sham total energy.

The above has been restricted, for simplicity, to spin-neutral systems. Pair densities, holes, E_{X}, and E_{C} may be separated into parallel-spin and opposite-spin components for more detailed analysis and for treatment of spin-polarized systems. See Refs. 34 and 35 for a full discussion. Explicit spin dependence is convenient in the chemical literature (though not so much in the physics literature), as the building blocks of chemistry are spin-polarized atoms. We will therefore reintroduce spin dependence in the rest of this article.

In a spin-polarized system the exchange-correlation energy is a functional of both spin densities, i.e., $E_{XC}(\rho_{\uparrow}, \rho_{\downarrow})$, and the Kohn-Sham orbital equation, Eq. (19), becomes a pair of equations

$$-\frac{1}{2} \nabla^{2} \psi_{\sigma} + v_{KS}^{\sigma} \psi_{\sigma} = \epsilon_{\sigma} \psi_{\sigma}, \quad (36)$$

one for each spin, with the Kohn-Sham spin potential given by

$$v_{KS}^{\sigma} = v_{\text{ext}} + v_{\text{el}} + \frac{\delta E_{XC}}{\delta \rho_{\sigma}}. \quad (37)$$
The total energy formula is the same as Eqs. (3) and (18), except that \(E_X \) in Eq. (3) and \(E_{XC}(\rho) \) in Eq. (18) are replaced by \(E_{XC}(\rho_u, \rho_p) \).

V. GRADIENT APPROXIMATIONS: THE ASCENDENCY OF DFT

Let us introduce the acronym DFA at this point for “density-functional approximation.” If you attend DFT meetings, you will know that Mel Levy often needs to remind us that DFT is exact. The failures we report at meetings and in papers are not failures of DFT, but failures of DFAs.

The most fundamental process in chemistry is the making and breaking of bonds. Computation of bond energies is therefore one of the greatest concerns of quantum chemists. It was not until the 1980s that software implementations of HFS (and hence KS-DFT) were up to the task of computing it. Therefore one of the greatest concerns of quantum chemists.

Hartree-Fock theory is assessed first. We see, as expected, massive underbinding statistics, with ME = −158.9 and MAE = 158.9 kcal/mol. Hartree-Fock-Slater, essentially the exchange-only LDA [see Eq. (38) below] is a huge improvement, with ME = −23.6 and MAE = 35.0 kcal/mol. But there is no clear underbinding or overbinding trend. The LDA for exchange-correlation has a massive overbinding trend, as observed, e.g., for diatomic molecules by Becke in the mid 1980s. The G2/97 errors are ME = 82.9 and MAE = 82.9 kcal/mol. This large overbinding tendency is actually good news. It means something profound is awaiting discovery.

Since \(E_X \) dominates \(E_{XC} \), and since it is given by the exact expressions of Eqs. (30) and (35), it is the natural first consideration for improvement. The LDA for pure exchange is

\[
E_{X}^{LDA} = \frac{3}{8} \left(\frac{3}{4\pi} \right)^{1/3} \int \left(\rho_u^{4/3} + \rho_p^{4/3} \right) \, d\mathbf{r}.
\]

In free atoms \(E_{X}^{LDA} \) falls short of the exact \(E_X \) by typically 5%–10% (Table II). Might the local density gradient provide useful additional information? Dimensional analysis fixes the form of the lowest-order gradient correction (LGC) to the LDA as follows:

\[
E_{X}^{LDA} + \beta \sum_a \int \frac{\left(\nabla \rho_a \right)^2}{\rho_a^{4/3}}.
\]

with a coefficient \(\beta \) one might hope to calculate from the theory of the slowly varying electron gas. In the 1970s and 80s, at least three different theoretical values were published. Earlier, in 1969, the pragmatic approach of fitting \(\beta \) to atomic exchange energies had been taken by Herman et al. The Herman value,

\[
\beta = 0.003 \text{ to } 0.004,
\]

is at least twice as large as the later “theoretical” values, a conundrum that persists to this day. There is no doubt, however, that the “theoretical” \(\beta \) is of little relevance in chemistry. Becke has published a simple exchange hole model giving roughly the Herman value. See also Langreth and Mehl and Hu and Langreth for additional insights.

There is a problem with Eq. (39) that renders it unacceptable in any case. The functional derivative (i.e., the KS potential) of the gradient term diverges in the exponential tails of finite systems. This is not just a computational nuisance. It reflects a fundamental failure of the LGC functional form. Becke suggested a simple modification in 1986 that fixes the problem:

\[
E_{X}^{B86} = E_{X}^{LDA} - 0.0036 \sum_a \left(\frac{\rho_a^{2/3}}{1 + 0.004 \chi^2} \right),
\]

known as “B86,” with parameters fit to atomic data (Table II). The B86 \(\beta \) (0.0036) is in good agreement with the Herman value, Eq. (40). Particularly exciting, however,
was that B86, in combination with an opposite-spins-only LDA correlation functional,57,58 gave excellent bond energies in diatomic molecules.56 In Table IV we present G2/97 statistics for B86 in combination with the more recent “PBE” correlation functional59 to be discussed later. The MAE of “B86+PBE” is 8.0 kcal/mol, an order of magnitude better than for the exchange-correlation LDA. Reference 56 was the first indication, since its birth more than twenty years earlier, that DFT might be a useful tool in computational chemistry.

Becke published a second gradient-corrected E_X the same year60 (“B86b”):

$$E_{X}^{B86b} = E_{X}^{LDA} - 0.00375 \sum_a \int \rho^4 (1 + 0.007\chi_0^2)^{3/5}. \ (42)$$

The G2/97 performance of B86b+PBE is similar to that of B86+PBE (Table IV). That different gradient-corrected E_X functionals perform similarly in molecular systems will be an important thread in our G2/97 tests.

At the same time, Perdew and Wang61 took another approach. The exchange hole always has negative value, Eq. (30), and is always normalized to -1 electron, Eq. (31). Upon deriving an expression for the exchange hole in an electron gas with a small density gradient, they found that this lowest-order (in the density gradient) hole was not negative definite and did not satisfy the normalization condition. They zeroed the positive regions, restored proper normalization by truncating the rest, and numerically integrated the truncated hole to obtain an E_X approximation. Then the numerical results were fit with the following functional form:

$$E_{X}^{PW86}(\rho) = \int e_{X}^{LDA} (1 + 1.296\chi_2 + 14\chi_4 + 0.26\chi_6) \rho^{1/3}, \ (43)$$

$$e_{X}^{LDA} = -\frac{3}{4} \left(\frac{3}{\pi}\right)^{1/3} \rho^{4/3}, \ s = \frac{[\nabla \rho]}{2(3\pi)^{3/2}} \rho^{4/3},$$

known as “PW86.” Perdew and co-workers, as is the convention of physicists, write their exchange functionals as spin-neutral total-density functionals. In spin-polarized systems, one uses

$$E_X(\rho_a, \rho_b) = \frac{1}{2}[E_X(2\rho_a) + E_X(2\rho_b)]. \ (44)$$

Without any parameters fit to atomic data, PW86 atomic exchange energies compare well to those of B86 and B86b (Table II). In Table IV, we see that the G2/97 statistics for PW86+PBE are also in line with the other gradient approximations. The model underpinning PW86 has been revisited by Murray, Lee, and Langreth62 and the parameters in Eq. (43) slightly adjusted. We refer to the adjusted functional as “revPW86” in Tables II and IV.

Exchange functionals of density and density gradient have the general form, in Perdew’s notation,

$$E_X(\rho) = \int [e_{X}^{LDA}(\rho) f_X(s)], \ (45)$$

where “s” [see Eq. (43)] is a dimensionless or “reduced” density gradient, and $f_X(s)$ is called the “exchange enhancement factor.” This form is stipulated by dimensional analysis. The UEG limit requires that $f_X(0) = 1$, and analyticity requires that $f_X(s)$ is an even function, expandable in powers of s^2. PW86 is explicitly written in this form. B86 and B86b can be cast in this form as well. In a finite system such as an atom or molecule, s behaves in a manner contrary to the gradient itself. Near nuclei, where $\nabla \rho$ is largest, s is relatively small. Far from nuclei, where $\nabla \rho$ approaches zero, s diverges to infinity. In other words, electron densities are most “homogeneous” near atomic nuclei, and most “inhomogeneous” in exponential tails. The functional form of Eq. (45) is known as the “generalized gradient approximation” (GGA), because it goes beyond the lowest-order gradient correction, Eq. (39). GGAs can be viewed as resumptions of presumed infinite-order gradient expansions in s^2.

The exchange enhancement factor interpolates between $s = 0$, the UEG limit, and the asymptotic $s = \infty$ limit in the exponential tails of finite systems. The physics in the asymptotic limit is interesting. When an electron is far from a finite system ($r \to \infty$) the exchange hole remains pinned to the system and the electron sees an asymptotic Coulomb potential $-1/r$. Thus the exchange energy density goes to [see Eq. (35)]

$$e_X \approx \frac{-1}{2} \frac{\rho}{r} \ (46)$$

Remarkably, this behavior can be captured by a density-gradient correction.63 Given that the asymptotic density is exponential, $\rho_a \to Ae^{-\beta r}$, it can be shown that the following exchange functional,

$$E_X^{B88} = E_X^{LDA} - \beta \sum_a \int \rho_a^{1/3} \frac{\chi_0^2}{(1 + 6\beta\chi_0 \sinh \chi_0)}, \ (47)$$

does B88 capture, in addition, the exact $-1/r$ asymptotic functional derivative? Engel et al. have shown that, unfortunately, no GGA can give the exact asymptotic exchange energy density and the exact functional derivative. The functional derivative of B88 falls off like $-1/r^2$.

Despite the dramatic rise of exchange GGAs through the 1980s, quantum chemists, and physicists, were reluctant to adopt them. Ziegler65 was their sole advocate during this time, applying GGAs to challenging problems in inorganic and organometallic chemistry. But everything was about to change. At the International Congress of Quantum Chemistry in Menton, France, 1991, I reported GGA atomization-energy benchmarks on Pople’s older “G1” test set. Pople was present, and we had a memorable conversation that week, the first of what would be many. It was the boost that DFT needed.

Within a year, Pople and co-workers66 combined B88 exchange with the “LYP” correlation functional of Lee, Yang, and Parr67 (based on earlier work of Colle and Salvetti68), as modified by Miehlich et al.69 to create “BLYP.” This
was quickly followed by tests of a larger variety of functionals using the modest but efficacious 6-31G* basis set. Their software platform was the ubiquitous GAUSSIAN program, requiring only minor modifications of its Hartree-Fock technology and the implementation of numerical integration grids to incorporate DFAs. With the consequent release of GAUSSIAN 92/DFT, density-functional theory was widely launched into the chemistry community. This was a turning point. Virtually any chemist in the world could now do DFT computations.

In 1996, Perdew, Burke, and Ernzerhof (PBE) obtained an exchange GGA and a correlation GGA (the latter is the “PBE” correlation functional in Table IV) by enforcing selected theoretical constraints. Among them is the Lieb-Oxford bound, or at least equally well, suited to chemistry? In 1989, Becke offered an enlightening explanation. About half the UEG correlation energy is between parallel-spin electrons, essentially smoothing out long-range oscillations in the UEG exchange hole. In finite systems, especially low-Z atoms, this parallel-spin UEG effect is inoperative. Stoll et al. suggested that the correlation LDA for opposite spins only be used in chemical applications. Thus, DFAs for EC must attenuate the full correlation LDA by about a half, or more, in light atoms. Indeed, the correlation energy of a hydrogen atom is zero.

The first correlation DFA giving zero correlation energy for the H atom, or any one-electron system, is from Becke ("B88c"). Previous DFAs giving zero H-atom correlation energy, e.g., LYP and Stoll et al. ignored parallel spins altogether. B88c is also the first DFA explicitly based on the adiabatic connection, through \(\lambda \)-dependent cusp conditions. “Self-correlation error” can only be expunged properly if kinetic energy density,
average, around \(r_1 \), is easily obtained and Taylor expanded. The Taylor expansion, to second order, of the exact spherically averaged exchange energy \(E_x \) is given by

\[
E_x(r_1) = -\rho_0 - Q\sigma \tau_1^2 + \ldots
\]

where \(\tau \) is as defined in Eq. (50). If the second-order Taylor expansion of the model hole and the exact hole are equated, and if normalization to \(-1\) is enforced, then parameters \(A, a, \) and \(b \) are uniquely defined. This is the BR exchange hole model.

At first glance, the BR model might seem concocted and unnecessarily complicated. It depends on all of \(\rho, \nabla \rho, \nabla^2 \rho, \) and \(\tau \). Notice, however, that a normalized off-center exponential is precisely the exchange hole in a hydrogenic atom. Thus the BR hole is exact in two respects: it replicates the second-order Taylor expansion in \(r_1^2 \) of the exact exchange hole in general, and it fully replicates the exact exchange hole in any hydrogenic atom. Formulas for \(A, a, b, \) and \(E_x^{BR} \) may be found in Ref. 81, but are not expressible in closed analytical form. Imposition of the BR constraints yields a 1D nonlinear equation that must be solved by, e.g., the Newton-Raphson method. This is easily done. Becke-Roussel atomic exchange energies are about an order of magnitude better than the exchange LDA, but not as accurate as B88 (Table II).

To discard the uniform electron gas as a reference system, or not, is a personal choice. After a conference talk some years ago on the functionals OPTX \(^{83}\) and OLYP \(^{84}\) that do not respect the UEG limit, Nicholas Handy verbalized his own choice as follows: “I don’t know about you chaps in America, but at Cambridge we have never been able to synthesize jellium!” It should be added, though, that the performance of OPTX/OLYP deteriorates for heavy atoms because the LDA does become exact, in a relative-error sense, in the infinite \(Z \) limit. It was the view of the Handy group that this deterioration resides in the cores and is of little chemical importance. The same would apply to the BR functional.

BR has been successful in myriad subsequent applications. It has been spliced into \(^{85}\) the correlation functional B88c \(^{84}\) [called B88c(BR) in Tables III and IV]. It has been generalized, in a logical and nonempirical manner, to include paramagnetic current density \(^{96}\) ("BRj"). It was shown by Becke \(^{87}\) and by Johnson, Dickson, and Becke \(^{88}\) that BRj solves a long-standing fundamental problem with the LDA and GGAs in open-shell atomic states. The LDA and GGAs give large energy discrepancies between atomic open-shell Slater determinants that should be degenerate! BRj fixes this. In the “reverse” direction, BR has become the foundation of our latest work on exchange-correlation DFAs based on exact exchange (see Sec. VIII). Last, but not least, BR has been used to “density functionalize” the dispersion model of Becke and Johnson (see Sec. IX).

Meanwhile the group of Perdew, after honing the GGA functional class to its PBE form, \(^{59}\) worked on meta-GGAs. Employing their favored strategy, satisfaction of UEG and other theoretical constraints, they obtained the “TPSS” functional \(^{90-91}\) and the “revTPSS” functional \(^{92}\) among others. Both these functionals give the correct exchange energy of the hydrogen atom in addition to the UEG, and their MAEs on the G2/97 atomization energies are \(\sim 5\) kcal/mol, slightly better than typical GGAs.

The functional derivative of \(\tau \) dependent DFAs is problematic, because the functional \(\tau(\rho) \) is not known. It was the BR functional that prompted Neumann, Nobes, and Handy \(^{93}\) to circumvent the problem through differentiation with respect to orbital expansion coefficients instead of functional differentiation with respect to the density. This is the trick that made Harteck-Fock theory practical long ago. Formally it is not Kohn-Sham theory, but in practice should be very close. The same strategy was employed by Adamo, Ernzerhof, and Scuseria \(^{94}\) to implement meta-GGAs in the GAUSSIAN program. Alternatively, Arbuznikov and Kaupp \(^{95}\) have implemented an “optimized effective potential” (OEP) for meta-GGAs that is equivalent to the Kohn-Sham potential. Total DFT energies are rather insensitive to the orbitals, self-consistent, non-self-consistent, or OEP, but properties such as nuclear shielding constants are much less so. \(^{95}\) In a recent paper on a meta-GGA relativistic kinetic-energy approximation, Becke \(^{96}\) has derived a variational equation applicable to meta-GGAs which, again, is not the Kohn-Sham equation but should generate orbitals that are very close.

VII. HYBRID FUNCTIONALS

In 1993, Becke \(^{97}\) observed that GGAs, while dramatically reducing the massive overbinding tendency of the LDA, show a small overbinding tendency still. This can be understood from the adiabatic connection formulas, Eqs. (27) and (28). \(E_x \) depends on the coupling-strength averaged exchange-correlation hole. The \(\lambda = 0 \) exact exchange hole is relatively delocalized (“nonlocal”) in multicenter systems. In \(H_2 \), for example, \(h_x(1, 2) \) is spread equally over both centers regardless of the electron’s position \(r_1 \) [see Eq. (30)]. Electron correlation then localizes the hole as it evolves from \(\lambda = 0 \) to \(\lambda = 1 \). GGA holes, however, are inherently localized at all \(\lambda \), including \(\lambda = 0 \), and are therefore too compact. This explains why exchange-correlation GGAs, despite their sophistication, are slightly overbinding. The delocalized character of the exchange-correlation hole at \(\lambda = 0 \) can only be captured by replacing a small amount of DFA exchange by exact exchange!

In 1993 we proposed \(^{97}\) the following replacement:

\[
E_x^{B3PW91} = E_x^{LDA} + a(E_x^{exact} - E_x^{LDA}) + b\Delta E_x^{B88} + c\Delta E_x^{PW91},
\]

where \(a = 0.20, \quad b = 0.72, \quad c = 0.81. \)

This preserves the UEG limit, but reduces the amount of the B88 gradient correction \(\Delta E_x^{B88} \) and the PW91 gradient correction \(\Delta E_x^{PW91} \) because substitution of exact exchange reduces their importance. The three parameters \(a, b, \) and \(c \) were fit to atomization-energy data. This functional is known as “B3PW91” in deference to its three fitted parameters. In Table IV we report performance statistics for “B3PBE,” a variant of B3PW91 that replaces PW91 correlation with the more recent PBE correlation. B3PBE significantly reduces
some have, arguably, gone too far in the locality, as van VooRhis and Scuseria have pointed out. The revised B3LYP has been the most popular exchange-correlation DFA in computational chemistry.

Frisch and co-workers reworked B3PW91 using the LYP correlation DFA instead of PW91. The reworked functional employs the same three parameters as in Eq. (52) and is known as “B3LYP.” For the past two decades, B3LYP has been the most successful exchange-correlation DFA in computational chemistry.

Perdew, Ernzerhof, and Burke argued that 25% exact exchange was preferred to 20% in B3PW91. Combined with the PBE exchange-correlation GGA, and fixing \(b = 0.75 \) and \(c = 1 \), the corresponding functional is called “PBE0.” The slightly higher exact-exchange fraction, \(a = 0.25 \), in PBE0 compensates for the distinctive overbinding tendency (Table IV) of the pure PBE+PBE GGA.

These functionals are called “hybrid” functionals for obvious reasons. They mix GGA exchange with explicitly nonlocal exact exchange. Also, their implementation in the GAUSSIAN program, and in other programs, was a hybrid of technologies. The exact exchange part was implemented with well-developed Hartree-Fock techniques (differentiation with respect to orbital expansion coefficients) and the rest was KS-DFT. As such the \(E^\text{exact} \) part is not Kohn-Sham exact exchange. The orbitals are nevertheless close to true Kohn-Sham orbitals. Mixing of BR-type functionals and meta-GGAs with exact exchange has also been widely tested. An excellent review of GGA and meta-GGA hybrids can be found in Ref. 102. It appears that meta-GGAs need less exact exchange than GGAs. The kinetic energy density in meta-GGAs can crudely sense exact exchange nonlocality, as Van Voorhis and Scuseria and Becke have pointed out.

The parameter fitting in B3PW91 crosses a philosophical line. All the functionals in Tables II and III were determined by whatever means (fitting to atoms or fitting to theoretical constraints) once and for all time. They were not fit to molecular data. With B3PW91, fitting to molecular data was initiated. Many wish this door had never been opened. Unlike the comfortably small number of noble-gas atoms employed in the fitting of B86, B86b, or B88, there are uncountably many molecules! But there was little choice. The exact-exchange mixing fraction cannot be determined from atomic data. A few years later Becke went further, introducing a flexible form for GGA-hybrid functionals (“B97”) and for second-order GGA-hybrids (“B98”) that allowed systematic fitting of even more parameters. He started at ten, beyond which symptoms of overfitting set in. Some have gone further.

In an essay entitled “Obituary: Density Functional Theory (1927–1993)” in 2001, Gill pronounced that hybrid functionals marked the death of DFT. It is a purist view that has some merit. However, the heart of Kohn-Sham DFT is not necessarily that \(E_{\text{XC}} \) is explicitly density dependent, but that only the occupied orbitals are used, and that \(E_{\text{XC}} \) is invariant with respect to unitary orbital transformations. Hybrid functionals, meta-GGA and BR-type functionals, and the much more complicated nonlocal functionals in Secs. VIII–X, preserve these. It will take several more years, up Sec. IX of this article, before Kohn-Sham DFT finds itself in peril.

VIII. NONLOCALITY

After the heady decades of the 1980s and 1990s, it was easy to be complacent about the “standard” DFT approximations. As DFT applications multiplied, however, the list of failures of the standard GGA and hybrid functionals grew: overstabilization of molecular radicals, poor treatment of charge transfer processes, and, most troubling of all, the inability to account for dispersion interactions (to be discussed separately in Sec. IX). All of these are truly nonlocal effects, extending beyond intratomic to interatomic distances. They cannot be treated by local functionals depending on \(\rho \), or even by functionals depending additionally on \(\nabla \rho \), \(\nabla^2 \rho \), and/or \(\tau \). All such functionals are “local” as they use information only at each integration point \(r_i \). Truly nonlocal effects must be sensed by explicitly sampling, at each integration point, all other points \(r_j \neq r_i \).

It has been known for some time that local DFTs give a much too low barrier for the simplest hydrogen-atom-transfer (HAT) reaction in chemistry, \(H_2 + H \rightarrow H + H_2 \). The transition state is a linear \(H_3 \) arrangement with an unpaired electron in an orbital concentrated on the end hydrogens. Because the electron is unpaired, electron correlation cannot localize this highly delocalized hole. It is delocalized for all \(\lambda \). Therefore local DFTs, with their inherently localized exchange-correlation holes, seriously overestimate the transition state. A valuable benchmark set of HAT reaction barriers, compiled by Lynch and Truhlar, underscores these problems. Table IV lists MEs and MAEs of HAT barriers in addition to G2/97 statistics. All the local DFTs, and also the hybrids derived from them, significantly underestimate the HAT barriers.

What about locality/nonlocality of the orbitals? Local DFTs prefer delocalized self-consistent orbitals relative to exact exchange. Exact exchange must localize the orbitals in order to localize the hole and hence lower the energy. The localized holes underlying local DFTs, on the other hand, obviate the need to localize the orbitals. In homonuclear dissociations of closed-shell molecules, this is a good thing. The Coulson-Fischer point in diatomic molecules (the internuclear separation at which spin-restricted orbitals break symmetry in order to lower energy) for local DFTs is much further out than for Hartree-Fock. In heteronuclear dissociations, however, local DFT orbitals are too delocalized. In charge-transfer complexes, for example, too much delocalization leads to too much transferred charge and too much stabilization. An early computational study of charge-transfer complexes by Ruiz et al. foretold this. A much more recent study of charge transfer in the TTF/TCNQ complex, as a function of exact-exchange mixing fraction, nicely illustrates (see Fig. 5 in Ref. 113) that local DFTs transfer too much charge.

By far the most embarrassing failure of local DFTs is the energy curve of the simplest bond in chemistry, \(H_2^+ \), plotted in Figure 1. Near the equilibrium internuclear separation, standard DFTs perform well, giving a good bond energy. As
\[\text{H}_2^+ \text{ is stretched, however, a typical local-DFA energy curve (e.g., BLYP in Fig. 1) falls increasingly below the exact curve, displays an artifactual maximum, and diverges to an erroneous asymptote almost as deep as the bond minimum itself! This is the worst possible case of a highly delocalized hole whose extent cannot be sensed by local DFAs. Local DFA holes, in this worst case, are far too compact and local DFAs overstabilize stretched H}_2^+ \text{ horribly.} \]

Hybrid DFAs are a slight improvement, but not nearly enough. See the B3LYP curve in Figure 1. “Long range corrected” (LRC) methods have been proposed that divide the interelectronic interaction \(\frac{1}{r_{12}} \) into a short-range part and a long-range part:

\[
\frac{1}{r_{12}} = \frac{1 - \text{erf}(\omega r_{12})}{r_{12}} + \frac{\text{erf}(\omega r_{12})}{r_{12}}. \tag{53}
\]

Modified density-functional approximations are used at short range. Long range is handled exactly. LRC methods have attracted much attention, but are not the final answer. Just as the exact-exchange mixing fraction in GGA-hybrids is really not a molecule-independent constant, the range parameter \(\omega \) in LRC functionals is not a constant either. Its optimum value in different systems may be difficult to discern, especially given that \(\omega \) is a nonlinear parameter.

All the failures of local DFAs reside in the exchange part. Also, most of the parameters in DFAs, whether “empirical” or “nonempirical,” are related to the exchange part. An overwhelming proliferation of DFAs has diluted the DFT literature in recent years. The flexibility of meta-GGAs, in particular, invites endless reworking and endless refitting. The “Minnesota” functionals are fit to almost a thousand data points, in over fifty different sets, by dozens of parameters. The Perdew group has also published a bewildering number of meta-GGAs. Broad applicability to solid-state and surface physics and to metallic and non-covalent in addition to covalent bonds is their objective. Good intentions notwithstanding, things are spinning out of control. How, and when, will it stop?

If “100% exact exchange” were used in DFAs instead of GGA, meta-GGA, LRC, or other exchange approximations, nonlocality errors would be eliminated. Contentious parameter fitting would, for the most part, be eliminated as well. Furthermore, exact exchange is the only way to ensure that any one-electron system is properly treated. However, exact exchange must be coupled with entirely new kinds of correlation functionals. Local electron-gas-like functionals describe short-range dynamical correlations only, and will not suffice. To be partnered with exact exchange, correlation functionals must be as nonlocal as exact exchange itself, in order to describe multicenter nondynamical (or “static”) correlation effects.

With two publications in 2003 and 2005, we developed a 100% exact-exchange-based correlation model that performs admirably on the G2/97 tests (“B05” in Table IV). At every point in a molecule, B05 applies a “reverse” BR procedure to the exact exchange-hole potential, namely, the Slater potential \(v_{\text{Slater}}^{\text{XC}} \) of Eq. (4), to extract an effective local exchange-hole normalization \(\lambda_{\text{eff}}^{\text{XC}} \). This is a measure of exchange-hole localization or delocalization. If \(\lambda_{\text{eff}}^{\text{XC}} \) is close to 1, the exchange hole is localized and there is no nondynamical correlation. If \(\lambda_{\text{eff}}^{\text{XC}} \) is smaller than 1, the exchange hole is delocalized to other centers and nondynamical correlation kicks in. The details are unimportant here, but B05 has the following form:

\[
E_{\text{B05}}^{\text{XC}} = E_{\text{exact}}^{\text{XC}} + a_{N_{\text{DC}}}^{\text{opp}} U_{N_{\text{DC}}}^{\text{opp}} + a_{N_{\text{DC}}}^{\text{par}} U_{N_{\text{DC}}}^{\text{par}} + a_{D_{\text{DC}}}^{\text{opp}} E_{\text{DC}}^{\text{opp}} + a_{D_{\text{DC}}}^{\text{par}} E_{\text{DC}}^{\text{par}}. \tag{54}
\]

Each of the four correlation terms represents an explicit correlation hole model for opposite-spins and parallel-spins, nondynamical and dynamical correlations, respectively. The nondynamical terms (NDC) are nonempirical. The dynamical terms (DC) are B88c(BR)34,35 with one parameter in each adjusted to the correlation energies of the He, Ne, and Ar atoms.

To add flexibility, linear prefactors were inserted in Eq. (54) and fit to the G2/97 data. The best-fit values are fascinating:

\[
a_{N_{\text{DC}}}^{\text{opp}} = 0.514, \quad a_{N_{\text{DC}}}^{\text{par}} = 0.651, \quad a_{D_{\text{DC}}}^{\text{opp}} = 1.075, \quad a_{D_{\text{DC}}}^{\text{par}} = 1.113. \tag{55}
\]

It transpires that \(a_{N_{\text{DC}}}^{\text{opp}} \) and \(a_{D_{\text{DC}}}^{\text{par}} \) are very near 1, indicating that the dynamical correlation models are obviously sound. The best-fit \(a_{N_{\text{DC}}}^{\text{opp}} \) and \(a_{D_{\text{DC}}}^{\text{par}} \) are very near 1/2, in agreement with the virial theorem if the nondynamical terms are interpreted as pure potential energies of correlation (hence the designation \(U \) instead of \(E \) for the NDC terms). These results are gratifying. B05 is essentially nonempirical. “Fine tuning” is a more appropriate terminology than “fitting” for the calibration of B05 on the G2/97 data. The B05 MAEs for both the G2/97 and G20/97 data are by far. B05 appears to treat delocalized radical systems very well, as was the hope for this new class of...
functionals. Also, B05 is exact for any one-electron system. The highly embarrassing H\textsubscript{2} problem is no problem for B05. It is noteworthy too that, beginning with B05, absolutely nothing from the uniform electron gas is used in our functionals. Becke-Roussel and B88c ideas are used throughout. Exact-exchange-based functionals have also been studied by Mori-Sanchez, Cohen, and Yang127,128 (MCY2). MCY2 is based on modeling of the adiabatic connection and contains three empirical parameters. It has the advantage over B05 that the Slater potential is not required. Therefore, MCY2 is similar in cost to standard hybrid functionals.

Perdew and co-workers have pursued the construction of exact-exchange-based functionals as well. The first of these is from Perdew \textit{et al.}129,130 (PSTS) and contains five empirical parameters. Like B05, PSTS requires the Slater potential. More recent work by Odashima, Capelle, and others131,132 is “nonempirical.” Their results are exploratory so far, with G2/97 MAEs exceeding 10 kcal/mol. Perdew has called this class of functionals “hyper GGAs,” an unsuitable name because they do not resemble GGAs at all. Rather, exact exchange replaces GGA exchange altogether, and the full non-locality of the exact exchange energy density is input to the correlation part. “Exact-exchange-based” (EXX-based), “true correlation,” or “pure correlation” are better names.

B05, MCY2, and PSTS have been assessed by Liu \textit{et al.}133 using an efficient RI (resolution of the identity) implementation of Pronyov \textit{et al.}134-136 for self-consistent computations. They find that B05, MCY2, and PSTS do not perform quite as well as heavily parametrized meta-GGAs or LRC GGAs on standard thermochemical tests. The EXX-based functionals are significantly better, however, in dissociation curves, including H\textsubscript{2}+ and the equally problematic He\textsubscript{2}+. Also, B05 and MCY2 give the correct singlet ground state for the NO dimer, a well-known stringent test of nondynamical correlation, and a reasonable binding energy. PSTS gives the singlet ground state but too much binding. All the meta-GGAs and LRC GGAs qualitatively fail the NO-dimer test.135

With these explicitly nonlocal, exact-exchange-based functionals looking promising, it is tempting to proclaim that “universal” DFAs are in sight. But there is one more nonlocality to consider.

IX. DISPERSION INTERACTIONS: THE FLOODGATES OPEN

The great promise of DFT is the simulation of complex systems of very large size: biological systems, materials, surfaces, and interfaces. In areas such as these, van der Waals (vdW) interactions play a crucial role. Standard DFAs treat hydrogen-bonding interactions fairly well,137 as their origin is largely electrostatic. Dispersion interactions, on the other hand, are highly problematic for conventional functionals. I have heard it said that “chemistry of the 20th century was about intramolecular interactions; chemistry of the 21st century will be about intermolecular interactions” (Mark Ratner in a 2004 seminar). It is absolutely critical that DFAs be able to treat dispersion interactions.

Kristyan and Pulay published an early warning in 1994,138 stating the more-or-less obvious fact (but it needed to be said) that local DFAs cannot give an asymptotic dispersion interaction of London form, $-C_d/R^6$. The asymptotic interaction energy of local DFAs falls off exponentially instead. Undeterred, a few studies of conventional DFAs and noble-gas vdW curves appeared in the DFT literature.139-142 Some functionals, including the LDA, bound noble-gas dimers. Some did not. Agreement with experimental data, when binding was observed, was haphazard at best. It was all very confusing.

A few papers were enlightening. Lacks and Gordon143 suggested that pure exchange DFAs should be assessed on their ability to reproduce exact-exchange noble-gas curves, which are repulsive. Their best picks were PW86 and B86b, whose enhancement factors $f_X(s)$ both have the same asymptotic behavior, s^{25}. The important influence of asymptotic $f_X(s)$ behavior on noble-gas curves was highlighted by Zhang, Pan, and Yang144 as well. But the fact remained that no known correlation functional could generate the London $-C_d/R^6$ dispersion energy.

In 2002, Wu and Yang145 resorted to adding an empirical dispersion correction

$$E_{\text{disp}} = -\sum_{j>i} f_{\text{damp}}(R_{ij}) \frac{C_{6\text{ij}}}{R_{ij}^6}$$

(56)

to a number of conventional exchange-correlation DFAs. The interatomic $C_{6\text{ij}}$ coefficients were obtained by fitting to accurate reference molecular C_6 coefficients. A damping function $f_{\text{damp}}(R_{ij})$ is also required in order to tame the R_{ij}^{-6} divergences at small internuclear separations. Grimme146,147 added a similar empirical dispersion correction to a variety of functionals, with a scaling parameter that absorbed differences in how each native functional handled vdW interactions. He obtained his best results with “B97-D,” in which the native DFA is Becke’s 1997 flexible 10-parameter GGA hybrid.148

Strategies to add dispersion in a less empirical way were also investigated. Moller-Plesset (MP2) perturbation theory and Goerling-Levy second-order Kohn-Sham perturbation theory account for dispersion. Indeed MP2 tends to overestimate it. Several groups therefore introduced double hybrid functionals combining GGAs, exact exchange, and second-order perturbation theory.149-151 Goerigk and Grimme have reviewed these methods in Ref. 152. Double hybrid DFAs are, in my opinion, undesirable. Their formal computer-time scaling is an order higher than Hartree-Fock or KS-DFT. They are philosophically undesirable as well, from the “occupied-orbitals-only” point of view.

Meanwhile an independent approach to dispersion interactions, known as “vdW-DF,” originated in papers by Andersen, Langreth, and Lundqvist153 and Dobson and Dintie.154 Subsequent developments are numerous. See, for example, Refs. 155 and 156. The vdW-DF approach does not add an explicit London-type correction to standard exchange-correlation functionals. It computes the beyond-LDA contribution to the correlation energy, dynamical plus dispersion, by a double integration

$$E_{\text{xc}}^{\text{vdW-DF}} = E_{\text{xc}}^{\text{GGA}} + E_{\text{xc}}^{\text{LDA}} + E_{\text{vdW}}$$

(57)

$$E_{\text{vdW}} = \int \rho(1) K_{\text{vdW}}(1,2) \rho(2) d1d2.$$
with an explicitly nonlocal kernel $K_{[\rho]}(1, 2)$ from electron gas theory. With no empirical parameters, the method generates good C_6 dispersion coefficients in a seamless manner. The “revPBE” exchange GGA was used in vdW-DF initially. A recent variation called vdW-DF2 uses “revPW86.” Other studies of exchange GGAs in vdW-DF make other recommendations. Steady advances, particularly the algorithmic improvements of Soler, have produced a powerful plane-wave-based technology for investigations of complex systems. As the name implies, however, vdW-DF is specialized to vdW interactions. It cannot be used in ordinary chemical applications.

The group of Tsuneda and Hirao have combined the Andersen-Langreth-Lundqvist underpinnings of vdW-DF with the LRC functional of Ref. 117 to build a general Gaussian-type-orbitals methodology going beyond just vdW interactions. Also in the vdW-DF family and designed for general chemical applications, are the functionals of Vydrov and Van Voorhis.

Outside the vdW-DF family, many researchers continued to work on corrections of the London, Eq. 56, form. A nonempirical way to obtain interatomic dispersion coefficients, employing only occupied Kohn-Sham orbitals, was needed. Becke and Johnson developed a nonempirical approach in a series of papers beginning in 2005, 156-165. The concept is simple. The exchange hole, $h_1(1, 2)$, of an electron at r_1 in a nonuniform system is generally not centered on the electron. Hence the electron plus its hole is a neutral entity with a nonzero r_1-dependent “exchange-hole dipole moment,” $d_{XDH}(r_1)$, easily calculable from Eq. (30). This position-dependent XDM moment, if taken in each of two distinct atoms, generates a dipole-dipole interaction which, when inserted into second-order perturbation theory, generates a dispersion energy.

That $h_1(1, 2)$ is not centered on r_1 is perfectly manifested by the Becke-Rossel exchange hole model of Sec. VI. Indeed the magnitude of $d_{XDM}(r_1)$ is, to a very good approximation, just b in the BR model, and its direction is towards the nucleus. Thus the XDM dispersion model is a density-functional model. Moreover, it can be extended to higher order $-C_{60} R^6$ and $-C_{10} R^{10}$ terms, 156,160 and to atoms in molecules, thus reflecting their molecular environments. The end result is the XDM dispersion correction

$$E^{XDM}_{dip} = -\sum_{j \neq i} \left(\frac{C_{6j}}{R^{6}_{d_{dip},ij}} + \frac{C_{10j}}{R^{10}_{d_{dip},ij}} \right)$$

in which all dispersion coefficients are computed nonempirically “on the fly” using the molecular, ρ, $\nabla \rho$, $\nabla^2 \rho$, and τ. The separations $R_{d_{dip},ij}$ controlling the damping of each term are related, ultimately, to only two universal constants.

The initial XDM work of Johnson and Becke employed exact (HF) exchange, the B88(BR) dynamical correlation DFA, and the above dispersion correction. The subsequent goal of Kannemann and Becke was to find an optimum exchange-correlation GGA with which to partner XDM. There is enormous variability between exchange DFAs and their noble-gas interaction curves; everything from massive over-repulsion to massive artificial binding. Kannemann and Becke concluded, as did Lacks and Gordon, that PW86 is the optimum exchange GGA for reproducing exact-exact exchange (Hartree-Fock) noble-gas curves. Murray et al. concluded the same in consideration of intermolecular interaction curves. They therefore revisited Perdew’s original model and reparametrized it in the light of more recent knowledge (“revPW86” in Tables II and IV), and inserted revPW86 into vdW-DF2. The choice of GGA for dynamical correlation is not critical. Kannemann and Becke chose PBE. The PW86+PBE+XDM combination was tested with Gaussian-type-orbitals in Ref. 172, and has been fully developed into an efficient and powerful general-purpose chemical tool in Ref. 173.

Following quickly after XDM, other nonempirical dispersion models appeared: Tkatchenko and Scheffler (“TS”), Sato and Nakai (“LRD”), and Grimme et al., [“D3” and “D3(BJ)”, each based on a different underlying strategy. The D3 model employs a volume ratio trick [Eq. (7) in Ref. 174] to determine atom-in-molecule dispersion coefficients and vdW radii from free-atoms values. This trick is from Becke and Johnson [Ref. 167 (1st paper) and Ref. 169]. The LRD (local response dispersion) method of Sato and Nakai is related to the vdW-DF family but avoids the double integration in Eq. (57). The D3 model of Grimme et al. uses pre-computed reference data for dispersion coefficients, and the concept of “fractional coordination number” to mimic the environment of an atom in a molecule. D3(BJ) is a refinement of D3 that incorporates the rational damping, Eq. (58), of Johnson and Becke. Grimme’s models are garnering popularity among chemists, as they are the simplest of the above to implement.

All of this was a dramatic reversal of fortune. Circa 2000, with nothing in sight but empirical dispersion corrections, the future of DFT was bleak. By 2010, everything had changed for the better.

Applications of DFT dispersion methods are rapidly growing and theoretical progress continues unabated. The thermochemistry benchmark sets that were indispensable for DFA development in the past have been joined by vdW benchmark sets. The S66 set of Rezac, Riley, and Hobza for biochemical systems, the set of supramolecular complexes of Kisthau and Grimme, and the molecular solids set of Otero-de-la-Roza and Johnson are a few examples. Three-center dispersion interactions, in addition to two-center interactions, are being studied. Screening effects are being studied as well. I think the jury is still out on the importance of three-center interactions and screening. The balance between these latter effects, higher-order C_6 and C_10 terms, damping functions, and the exchange-correlation DFAs themselves, is incredibly delicate.

The dispersion problem has also stimulated great interest in the “random phase approximation” (RPA) of the physicists and its application to molecular systems. RPA invokes the virtual orbitals and, like all WFT methods that use the virtuals, naturally incorporates dispersion. The RPA literature is complicated, confusing (at least to me!), and...
growing fast. Early explorations of RPA in a DFT context were made by Langreth and Perdew. Recent flavors of the subject may be found in Refs. 187–191. The floodgates are open now. The virtual orbitals are pouring in. Double hybrids were just the first step. The ultimate conclusion of combining DFT and WFT is what Bartlett calls “ab initio DFT,” a mathematical and theoretical framework that exploits the best of both worlds and seeks a systematic route to improving both. Operationally though, it is not in the occupied-orbitals-only spirit of Kohn and Sham.

Gill’s pronouncement of the death of DFT was perhaps premature, but not unfounded. The dispersion problem has, in large part, plunged DFT into an identity crisis. Have we forgotten why Kohn-Sham theory is popular in the first place? If employment of the virtual orbitals increases, I am afraid the beauty and simplicity of the Kohn-Sham vision will be lost.

X. INTO THE FUTURE

With dispersion interactions in place, the future looks bright. But we cannot, quite yet, forget the basics. The focus of ground-state DFA developers has shifted to what I hope is the last frontier, “strong” correlation. Strong correlation refers to substantial mixing of configurations in systems with a small energy of correlation in the “real” system. The total correlation energy of the “real” system and provide measures of strong correlation. The “strictly” correlated limit, $\lambda \to \infty$, has been studied as a possibly useful source of information. Reference 200 is an up-to-date look.

Within the last year, we have proposed a simple local relationship between E_C and U_C, in accord with Eq. (60), that looks promising as a harbinger of strong correlation.

The “B13” functional resembles B05. It is based on exact exchange and has the following correlation part:

$$E_C^{B13} = a_{opp}^{app} U_N D_C + a_{par}^{app} U_N D_C + a_{opp}^{opp} U_N D_C + a_{par}^{par} U_N D_C + \Delta E_C^{\text{strong}}.$$ (61)

with a strong-correlation correction, $\Delta E_C^{\text{strong}}$, that recognizes strongly correlated situations automatically. $\Delta E_C^{\text{strong}}$ is expandable in a polynomial series, but one or two terms appear to be sufficient (five or six linear parameters altogether).

B13 has been fine tuned to G2/97 atomization energies and spin-depolarized atoms: i.e., the spin-restricted dissociation limits of molecular bonds. Some G2/97 accuracy is sacrificed compared to B05 (see Table IV), but the potential universality of B13 is intriguing. A preliminary spin-restricted B13 binding-energy curve for Cr$_2$ has a minimum at 1.64 Å (experiment 1.68) and a bond energy of 54.9 kcal/mol (experiment 34.6). Considering that spin-restricted Hartree-Fock is unbound by over 400 kcal/mol, and that B05 is unbound by ~ 15 kcal/mol (unpublished calculations), the B13 result is very encouraging. The multireference WFT computations of Refs. 193 and 194 used, respectively, over 1×10^7 and almost 3×10^7 configurations!

Like B05, the five (or six) parameters in B13 are “fine tuning” linear prefactors with logical values rooted in the adiabatic connection. All of $a_{opp}^{app}, a_{par}^{app}, a_{opp}^{opp}$, and a_{par}^{par} have value ~ 0.6, the prefactor in $\Delta E_C^{\text{strong}}$ has value ~ 0.4, and it is no accident that these add up to ~ 1. B13 is essentially nonempirical.

Systems at “avoided crossings” have a zero HOMO-LUMO gap and are challenging strong-correlation problems. An excellent discussion of the energy surface of the prototypical H$_2$ system, with an avoided-crossing transition state at the square geometry, can be found in Ref. 202. Fractional occupancies are implicated in this and other avoided-crossing problems. It is not possible to represent the D$_{4h}$ density of the open-shell square H$_4$ structure, or structures near it, without fractional occupancies. The B13 barrier of 14.2 kcal/mol in this H$_4$ system (unpublished) is in fair agreement with the high-level WFT barrier of...
147.6 kcal/mol. A few other B13 avoided-crossing barriers can be found in the very recent Ref. 204.

Like B05, B13 is a functional of ρ, $\nabla \rho$, $\nabla^2 \rho$, τ, and the Slater potential v_{Slater}, Eq. (4). Direct computation of the Slater potential on all grid points is costly, and differentiating B05 (or B13) with respect to orbital expansion coefficients for the purpose of self-consistent computations is daunting. Yet both of these tasks have been accomplished for B05 134–136, 205 and are therefore in hand for B13. Self-consistent B05/B13 computations are a fast alternative. 133–136

The distributed Slater potential may also be computed in an indirect manner by a literal implementation of Slater’s original orbital-averaged HF-potential concept (Sec. II). A simple reorganization of the HF equations is all that is required. 206–208 Thus, post-Hartree-Fock implementations of EXX-based functionals like B05, B13, or PSTS are conceivable at essentially no cost beyond HF itself (plus, perhaps, an additional HFS computation to correct for basis-set artifacts 207, 208). Post-Hartree-Fock DFT is not new. The 1992 implementation of BLYP by Gill et al. 66 was post-HF, followed by Oliphant and Bartlett 209 and others. Numerous DFT researchers had used HF orbitals long before then. Post-Hartree-Fock DFT has advantages over self-consistent DFT. As Verma, Perera, and Bartlett 210 have reminded us, HF requires no numerical integration grids and therefore has high speed and orbital precision (i.e., no grid noise). However if forces are required, perturbations of the HF orbitals need to be computed and some advantage is lost. 210 Overall, though, post-Hartree-Fock DFT chemistry and self-consistent DFT chemistry are of similar cost. Future prospects for nonlocal EXX-based DFAs employing the Slater potential, whether implemented post-HF, post-LDA, or self-consistently, are exciting.

Looking back thirty years to the genesis of DFA growth, I am amazed at where we have come. Our goal back then was to replace all things WFT, including Hartree-Fock, with simpler density-functional approximations. I did not imagine, until 2003, that I would ever espouse the use of exact exchange. Yet this is my position, today, on how to proceed into the future. We have come “full circle” back to exact exchange or, if you prefer, Hartree-Fock. Figure 3 plots the path. Post-Hartree-Fock WFT, circa 1980, involved (still does) configuration mixing. Post-Hartree-Fock DFT, circa 2010, is a very different thing. Pure, nonlocal correlation functionals are DFT at its best. Everything we have learned about GGAs, meta-GGAs, BR, etc., these past thirty years is in these functionals. To understand nonlocality, you have to understand locality first. Although we have come full circle ultimately, the thirty intervening years were well spent.

XI. SUMMARY

DFT detractors complain that the linchpin of KS-DFT, the exchange-correlation functional and its underlying hole, will never be expressible in closed analytical form and is not amenable to systematic improvement. DFA development has, in fact, been systematic, as the history in this Perspective has hopefully shown. We started with the LDA, which samples only the density at each grid (integration) point. GGAs sample density gradient information in addition to the density. Remarkably, the gradient helps us capture the physics of the exchange energy density out to the asymptotes of finite systems (B88). Next we included kinetic energy density, τ, to ensure zero correlation energy in one-electron systems and to exploit its crude knowledge of nonlocality. The BR functional includes $\nabla^2 \rho$ as well, exactly sampling the exchange-hole Taylor expansion as far as second order in r_{ij}. The full multicenter nonlocality of the exact exchange hole is partially incorporated into hybrid functionals. Recent “100%” EXX-based functionals, and functionals including dispersion and even virtual orbitals, are truly nonlocal. We have progressed from the LDA to full nonlocality in a rational and systematic manner, climbing the rungs of “Jacob’s DFT ladder” (an image, popularized by Perdew, 211 recounting the above advances as successive rungs in Jacob’s biblical ladder) as we reach for DFT heaven.

But DFT heaven is probably unattainable. DFAs, local or nonlocal, will never be exact. Users are willing to pay this price for simplicity, efficacy, and speed. As we strive to make DFAs more robust, will their accuracy and speed continue to satisfy users? Will Kohn-Sham DFT, in its pristine occupied-orbitals-only form, survive the pressure? Or will DFT and WFT transform each other and merge into a single entity. The next fifty years will be as interesting as the first.

ACKNOWLEDGMENTS

I am very grateful to the Killam Trust of Dalhousie University for my appointment as Killam Chair since 2006. Research support has been provided by the Natural Sciences and Engineering Research Council (NSERC) of Canada, and computing support has been provided by the Atlantic Computational Excellence Network (ACEnet).

of the identity” (RI) methods, localized orbital schemes, etc., but

A correction parameter α was discussed in Ref. 81 that restored the UEG limit without sacrificing the hydrogenic atom limit. We do not currently use this parameter in our work.

of matter not directly related to functional development, we will not review

(1976). There is a growing literature on the exact-exchange OEP about

100,100(1994).

1,100(2011).

116, 9559 (2002) and references therein.

