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ELEMENTARY WAVE MECHAI;IEI_C

1.1 The Schridinger equation

The principles of density-functional theory are conveniently expounded
by making reference to conventional wave-function theory. Therefore,
this first chapter reviews elementary quantum theory (Levine 1983,
Merzbacher 1970, Parr 1963, McWeeny and Sutcliffe 1969, Szabo and
Ostlund 1982). The next chapter summarizes the more advanced tech-
niques that we shall need, mainly having to do with density matrices,
Any problem in the electronic structure of matter is covered by
Schridinger’s equation including the time. In most cases, however, one is
concerned with atoms and molecules without time-dependent interac-
tions, so we may focus on the time-independent Schrodinger equation.
For an isolated N-electron atomic or molecular system in the Born-
Oppenheimer nonrelativistic approximation, this is given by

HY =EW (1.1.1)
where E is the electronic energy, W="(x,,x,,...,x,) is the wave
function, and H is the Hamiltonian operator,

e N B
A=23 (-iV)+ X v(r)+ 2 — (1.1.2)
=1 im] d=j Py
in which
v(r) = —Z% (1.1.3)

is the “external” potential acting on electron i, the potential due to nuclei
of charges Z,. The coordinates x; of electron i comprise space coordinates
r; and spin coordinates 5, Atomic units are employed here and
throughout this book (unless otherwise specified): the length unit is the
Bohr radius a,(=0.5292 A), the charge unit is the charge of the electron,
¢, and the mass unit is the mass of the electron, m,.. When additional
fields are present, of course, (1.1.3) contains extra terms.
We may write (1.1.2) more compactly as

A=T+V, +V, (1.1.4)
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where

N
F=3 (-iv) (1.1.5)
j=]
is the kinetic energy operator,
N
Ve = 2, v(r) (1.1.6)
=]
is the electron—nucleus attraction energy operator, and
- |
V=2~ (1.1.7)
i<ify

is the electron—electron repulsion energy operator. The total energy W is
the electronic energy E plus the nucleus-nucleus repulsion energy

Loy
Vi = E o (1.1.8)
a<fl Rmﬂ
That is,
W=E+V, (1.1.9)

It is immaterial whether one solves (1.1.1) for E and adds V,, afterwards,
or includes V,, in the definition of / and works with the Schrodinger
equation in the form AW = WW.

Equation (1.1.1) must be solved subject to appropriate boundary
conditions. ¥ must be well-behaved everywhere. in particular decaying
to zero at infinity for an atom or molecule or obeying appropriate
periodic boundary conditions for a regular infinite solid. |W|® is a
probability distribution function in the sense that

[P(r™, s™) |* dr™ = probability of finding the system
with position coordinates between r™ and
r + dr" and spin coordinates

equal to 5™ (1.1.10)
Here dr® =dr,, dr,, . . ., dry; " stands for the set r,,r;, . .., ry, and 5"
stands for the set s, 55, ..., 5y. The spatial coordinates are continuous,

while the spin coordinates are discrete. Because electrons are fermions,
Y also must be antisymmetric with respect to interchange of the
coordinates (both space and spin) of any two electrons.

There are many acceptable independent solutions of (1.1.1) for a given
system: the eigenfunctions W,, with corresponding energy eigenvalues
E,. The set W, is complete, and the W, may always be taken to be
orthogonal and normalized [in accordance with (1.1.10)],

IWiW,d:“=(W,,|W,}=&., (1.1.11)

We denote the ground-state wave function and energy by W, and E,.
Here [ dx™ means integration over 3N spatial coordinates and summation
over N spin coordinates.

Expectation values of observables are given by formulas of the type

> I W AW dx

_(wA|w)
(W)

= (1.1.12)
[ wew ax

where A is the Hermitian linear operator for the observable A. Many
measurements average to (;l}: particular measurements give particular
eigenvalues of A. For example, if W is normalized, expectation values of
kinetic and potential energies are given by the formulas

T[w1=(f}=fw'f~wx (1.1.13)
and

V[tv|=(t>}=jw'l?l¥d: (1.1.14)
The square brackets here denote that ¥ determines T and V'; we say that
T and V are functionals of W (see Appendix A).
1.2 Variational principle for the ground state

When a system is in the state W, which may or may not satisfy (1.1.1),
the average of many measurements of the energy is given by the formula

_{wAw)
E[W]= TIrg) (1.2.1)
where
(W H W) = jw-ﬂw dx (1.2.2)

Since, furthermore, each particular measurement of the energy gives one
of the eigenvalues of H, we immediately have

E[W]=E, (1.2.3)

The energy computed from a guessed ¥ is an upper bound to the true
ground-state energy E,. Full minimization of the functional E[W] with
respect to all allowed N-electron wave functions will give the true ground
state W, and energy E[W,] = E,; that is,

E,= m“in E[¥] (1.2.4)



Formal proof of the minimum-energy principle of (1.2.3) goes as
follows. Expand W in terms of the normalized eigenstates of H, W, :

‘P=§",Ct‘l’k (1.2.5)
Then the energy becomes
{: |Cel? Ex (1.2.6)
E[¥Y]=—— L
N T

where E, is the energy for the kth eigenstate of /. Note that the
orthogonality of the W, has been used. Because E,<E, =E,=
-+, E[W] is always greater than or equal to E,, and it reaches its
minimum E, if and only if ¥ = C,¥,,.

Every eigenstate W is an extremum of the functional E[W]. In other
words, one may replace the Schrodinger equation (1.1.1) with the
variational principle

SE[W]=0 (1.2.7)

When (1.2.7) is satisfied, so is (1.1.1), and vice versa.

It is convenient to restate (1.2.7) in a way that will guarantee that the
final ¥ will automatically be normalized. This can be done by the method
of Lagrange undetermined multipliers (§17.6 of Arfken 1980, or Appen-
dix A). Extremization of (W| 4 |W) subject to the constraint (W | ¥) = |
is equivalent to making stationary the quantity [(¥| 4 |¥) — E(W | W)]
without constraint, with E the Lagrange multiplier. This gives

S[{W H|W)—E(W|W)]=0. (1.2.8)

One must solve this equation for W as a function of E, then adjust E until
normalization is achieved. It is elementary to show the essential
equivalence of (1.2.8) and (1.1.1). Solutions of (1.2.8) with forms of ¥
restricted to approximate forms W of a given type (that is, a subset of all
allowable ¥) will give well-defined best approximations W, and £, to the
correct W, and E;. By (1.2.3), E,=E,, and so convergence of the
energy, from above, is assured as one uses more and more flexible 0.
Most contemporary calculations on electronic structure are done with this
variational procedure, in some linear algebraic implementation.

Excited-state eigenfunctions and eigenvalues also satisfy (1.2.8), but
the corresponding methods for determining approximate W, and E,
encounter orthogonality difficulties. For example, given W,, £, is not
necessarily above E,, unless W, is orthogonal to the exact W,,.

To summarize: For a system of N electrons and given nuclear potential
v(r), (1.2.8) defines a procedure for going from N and v(r) to the

ground-state wave function W and hence through (1.1.12) to the
ground-state energy E[N, v] and other properties of interest. Note that in
this statement there is no mention of the kinetic-energy or electron-
repulsion parts of M, because these are universal in that they are
determined by N. We say that E is a functional of N and v(r).

1.3 The Hartree—Fock approximation

Suppose now that W is approximated as an antisymmetrized product of N
orthonormal spin orbitals y,(x), each a product of a spatial orbital ¢,(r)
and a spin function o(s) = a(s) or fi(s), the Slater determinant

wilxy)  walxy) o yalx,)
Vi 1 Pi(x)  yalxy) - Paix;)
MFTVNL| : :
Yilxy) yalxy) - Yulxy)
1
=Wdﬂ[%%”‘ﬂ’~] (1.3.1)

The Hartree—Fock approximation (Roothaan 1951) is the method where-
by the orthonormal orbitals y, are found that minimize (1.2.1) for this
determinantal form of W,

The normalization integral (W, | Wye) is equal to 1, and the energy
expectation value is found to be given by the formula (for example, see
Parr 1963)

N ~
Eue= Vel A [We) =2 Hi+1 3 (- Ky) (1.3.2)
i=1 iy=1

where

H = I P! (x)[ =1V + v(x)])y,(x) dx (1.3.3)
1
.rrl.r . jJ ‘i-".-{n)‘fv'.*{l;} r_lz w‘:{l{z]wjile dx, dlz {1 34]

1
Ky= IJ "J"':(M]"J’;[xl] — yi(x2) ] (x2) dx; dx, (1.3.5)
Fa2

These integrals are all real, and J; = K;; =0. The J; are called Coulomb
integrals, the K, are called exchange integrals. We have the important
equality

Ji =K, (1.3.6)

This is the reason the double summation in (1.3.2) can include the i=j
terms.
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Minimization of (1.3.2) subject to the orthonormalization conditions

I Yl (x)y(x) dx = &, (1.3.7)

now gives the Hartree—Fock differential equations

N
Fy(x) =2 &,y,(x) (1.3.8)
j=1
where
F=-1Vi4+u+g (1.3.9)
in which the Coulomb-exchange operator §(x,) is given by
g=j—k (1.3.10)
Here
i N 1
fxre) =3 [vitewtn) - fx)de (1311
3 k=1 a2
an

k=3 w:txz}n:ﬂri:p.t:.} i (13.12)

with f(x,) an arbitrary function. The matrix € consists of Lagrange
multipliers (in general complex) associated with the constraints of (1.3.7).
Also,

Ej:=£ia “.3.[3]
so that ¢ is Hermitian (Roothaan 1951).

Multiplying (1.3.8) by ;" and integrating, one obtains the formula for
“orbital energies,”

El.Ei\r={wi'|F‘l‘p:}=Hr'+i(jq_Kr;] {113]4}

f=1

Summing over ¢ and comparing with (1.3.2), we find
N
Eyr= E & — Vee (1.3.15)
iml
where the symbol V. stands for the total electron—electron repulsion

energy
Vee= [ Winl) (2 ) Wiar(x) dx®

f=j i

=1 21 (Jy — Ky) (1.3.16)

ij=

L= ] ELEMEMNIART WAYE MELFIANILY -

For the total molecular energy including nuclear—nuclear repulsion, one
has from (1.1.9),

N
Wue=2 5=V .+ V., (1.3.17)

il

N
=Y H+V.+V, (1.3.18)
iml
Note that neither Eye nor Wy is equal to the sum of orbital energies.

Solution of (1.3.8) must proceed iteratively, since the orbitals vy, that
solve the problem appear in the operator F. Consequently, the Hartree—
Fock method is a nonlinear “self-consistent-field” method.

For a system having an even number of electrons, in what is called the
restricted Hartree—Fock method (RHF), the N orbitals vy, are taken to
comprise N/2 orbitals of form ¢,(r)a(s) and N/2 orbitals of form
¢e(r)f(s). The energy formula (1.3.2) becomes

N2 N2

.E;";p:z E H_t + z {l’ﬂ_xﬂ) (l.jklg]
where
H,= I P01V + v(r)]pu(r) dr (1.3.20)
1
Ju= “- |¢t(f|)|2;2 |@i(x2)|* dr, de, (1.3.21)

1
K= [ [ 91@roe) — el drdr,  (1322)
while the Hartree—Fock equations (1.3.8) now read
N2
Fou(r)= ‘2.' EPi(r) (1.3.23)

with the operator F given by (1.3.9) and (1.3.10), with (1.3.11) and
(1.3.12) replaced by

% e = ¥
e =23 [ 1gmte - drf(e) (1.3.26)

N2
ke)f(e)= >, ¢:.(rzlf(rz}rldlz¢..[n] (1.3.25)

The determinantal wave function (1.3.1) for this “closed-shell” case is
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explicitly
gin)als)) @in)B(s,) - - @ualr)B(s)
- 1 '#’l!:rz}*'g’z] '-‘P-'_:fz}ﬁ{_sz} s Pun(r)Bis)

VNI

Purn)alsn) GBln)  Praltn)Blsn)
(1.3.26)

An important property of this wave function [and also of the more
general (1.3.1)] is that a unitary transformation of the occupied orbitals
¢, (or y,) to another set of orbitals 7,, leaves the wave function
unchanged except possibly by an inconsequential phase factor. The
operators j, k, and F of (1.3.23) through (1.3.25) [or of (1.3.9) through
(1.3.12)] are also invariant to such a transformation (Roothaan 1951,
Szabo and Ostlund 1982, page 120). That is to say, if we let

o = E*: U, (1.3.27)
where U is a unitary matrix,
U'u=1 (1.3.28)
then (1.3.23) becomes
N2
Fn,= 2 e, (1.3.29)
mm]
where
e"=UeU” (1.3.30)

This exhibits the considerable freedom that exists in the choice of the
matrix €.

Since the matrix & is Hermitian, one may choose the matrix U to
diagonalize it. The corresponding orbitals A,,, called the canonical
Hartree~Fock orbitals, satisfy the canonical Hartree-Fock equations,

Fa,(r) = gk A, (r) (1.3.31)

Equation (1.3.31) is considerably more convenient for calculation than
(1.3.23). Furthermore, the orbitals that are solutions of (1.3.31) are
uniquely appropriate for describing removal of electrons from the system
in question. There is a theorem due to Koopmans (1934) that if one
assumes no reorganization (change of orbitals) on ionization, the best
(lowest-energy) single-determinantal description for the ion is the deter-
minant built from the canonical Hartree—Fock orbitals of (1.3.31). One
then finds, approximately,

m=—In (1.3.32)

where [, is the ionization energy associated with removal of an electron
from the orbital 4,. This equation is in error, because it ignores both
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reorganization and errors in the Hartree—Fock description (called correla-
tion energy: see the next section); fortunately these tend to cancel.

The orbital energies for the canonical Hartree—Fock orbitals also
control the long-range behavior of the orbitals. Naively, one would
expect, from the one-electron nature of (1.3.31), A, ~exp [—(—2¢,)""r]
for large r. This is correct for atoms with s electrons only, but not in
general. Instead, in general the maximum (least-negative) of all of the
occupied &), determines the long-range behavior of all of the orbitals:

A~ XP [—(—2€max)'?r]  forlarger (1.3.33)

The long-range properties of the exchange part of F are responsible for
this remarkable behavior (Handy, Marron, and Silverstone 1969). The
operator F is not a Sturm-Liouville operator.

For the closed-shell case, entirely equivalent to the canonical Hartree—
Fock description are the circulant Hartree-Fock description and the
localized Hartree-Fock description. Circulant Hartree—Fock orbitals
(Parr and Chen 1981, Nyden and Parr 1983) are orbitals the absolute
squares of which are as close to each other as possible in a certain sense;
for them, the matrix € of (1.3.29) is a circulant matrix (diagonal elemenis
all equal, every row a cyclic permutation of every other). Localized
Hartree-Fock orbitals (Edmiston and Ruedenberg 1963) are orbitals with
maximum self-repulsion or minimum interorbital exchange interaction.
The electron repulsion part of (1.3.19) is, from (1.3.6),

Vee=J—K (1.3.34)
where
L
Ju 2 Uy=3 Ja+ [E ha+ 2, .f,;,] (1.3.35)
k=1 & & k]
and
"
K= Ky=2Ju+ [Z Kﬂ;] (1.3.36)
k=] & .08

J and K are each invariant to unitary transformation, but the terms in
square brackets in these equations are not; the unitary transformation to
localized orbitals can therefore be effected by maximizing

J(self) = X J,, = K(self) (1.3.37)

or, equivalently, by minimizing

E Ky

kel

Circulant orbitals are important because they are orbitals that have
equivalent mathematical and physical footing, each very close to the
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square root of the electron density per particle. Localized orbitals are
important because their existence reconciles molecular-orbital theory
with the more traditional descriptions of molecules as held together by
localized chemical bonds.

If from the beginning one neglects all interorbital exchange terms in
the Hartree—Fock method, which corresponds to using a product of
orbitals as the wave function in place of the antisymmetrized product of
(1.3.1) or (1.3.26), one gets the orthogonalized Hartree method. The
closed-shell equation (1.3.23) is replaced by

Filot = Z el (1.3.38)

where . )
Fi'==iV+v +j, (1.3.39)
in which

i) = [ [P +2 3 lwaedl| - (1340

This method gives orbitals even more localized than the localized
Hartree-Fock orbitals; these are useful for some purposes (Levy, Nee,
and Parr 1975).

When the number of electrons is not even, the standard Hartree-Fock
scheme is what is called the unrestricted open-shell Hartree—Fock method
(UHF) (Szabo and Ostlund 1982, pages 205-229). Spatial parts of spin
orbitals with & spin are allowed to be different from spatial parts of spin
orbitals with f spin, even within a single “pair” of electrons. Noting that
orthogonality between all a-spin spin orbitals and all fi-spin spin orbitals
is still preserved, we see that the only problem in implementation is the
complication associated with handling all N orbitals in the Hartree—Fock
equations. The m sthematical apparatus is (1.3.8) to (1.3.12). The UHF
method can also be used for an even number of electrons. Often, indeed
usually, the UHF method then gives no energy lowering over the
restricted HF method. But there are important cases in which energy
lowering is found. For example, the UHF description of bond breaking in
H, gives the proper dissociation products, while the RHF description of
H; gives unrealistic ones.

Many physical properties of most molecules in their ground states are
well accounted for by use of Hartree-Fock wave functions (Schaefer
1972).

In actual implementation of Hartree-Fock theory (and also in calcula-
tions of wave functions to an accuracy higher than those of Hartree—
Fock), one usually (though not always) employs some set of fixed,
one-clectron basis functions, in terms of which orbitals are expanded and
many-electron wave functions are expressed. This transforms the mathe-
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matical problem into one (or more) matrix eigenvalue problems of high
dimension, in which the matrix elements are calculated from arrays of
integrals evaluated for the basis functions. If we call the basis functions
%p(r), one can see from (1.1.2) what the necessary integrals will be:

overlap integrals,
Soq = Ix;(r)xq(r] dr (1.3.41)

kinetic energy integrals,
oo = | 201902, (0) i (13.42)
electron—nucleus attraction integrals,

1
A1p)= [ 5@ x(r) (13.43)
and electron—electron repulsion integrals,

1
(pa1m)= [ [ a0 - nedi @ e de, (1349

Sometimes these are all computed exactly, in which case one says that
one has an ab initio method. (For reviews, see Schaefer 1977 and Lawley
1987. The term “akt initio” was used first, though intended to have a
different meaning, in Parr, Craig, and Ross 1950.) Sometimes these are
determined by some recourse to experimental data, in which case one has
a semiempirical method (Parr 1963, Segal 1977). Such details are of
course vital, but here they will not be of much concern to us in the
present exposition.

1.4 Correlation energy

When one is interested in higher accuracy, there are straightforward
extensions of the single-determinantal description to simple *‘multicon-
figuration™ descriptions involving few determinants (for example, Section
4.5 of Szabo and Ostlund 1982).

The exact wave function for a system of many interacting electrons is
never a single determinant or a simple combination of a few deter-
minants, however. The calculation of the error in energy, called
correlation energy, here defined to be negative,

Eﬁ.,=E_EH|.' [].4.1]

is a major problem in many-body theory on which there has been a vast
amount of work and much progress has been made. The methods
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employed include the lincar mixing of many determinants (millions!),
called configuration interaction (Chapter 4 of Szabo and Ostlund 1982),
and many-body perturbation techniques (Chapter 6 of Szabo and Ostlund
1982). For comprehensive reviews, see Sinanoglu and Brueckner (1970),
Hurley (1976), and Wilson (1984),

Correlation energy tends to remain constant for atomic and molecular
changes that conserve the numbers and types of chemical bonds, but it
can change drastically and become determinative when bonds change. Its
magnitude can vary from 20 or 30 to thousands of kilocalories per mole,
from a few hundredths of an atomic unit on up. Exchange energies are an
order of magnitude or more bigger, even if the self-exchange term is
omitted.

1.5 Electron density

In an electronic system, the number of electrons per unit volume in a
given state is the electron density for that state. This quantity will be of
great importance in this book; we designate it by p(r). Its formula in
terms of W is

p[r|]=Nj- "jlq"{lh Xy = s TIN}Izdn dlz' A e d:N {1.5.1)

This is a nonnegative simple function of three variables, x, y, and z,
integrating to the total number of electrons,

Ip{r] de=N (1.5.2)

There has been much attention paid to the electron density over the
years (Smith and Absar 1977). Maps of electron densities are available in
many places (for example, Bader 1970). For an atom in its ground state,
the density decreases monotonically away from the nucleus (Weinstein,
Politzer, and Srebrenik 1975), in approximately piecewise exponential
fashion (Wang and Parr 1977). For molecules, at first sight, densities look
like superposed atomic densities; on closer inspection (experimental or
theoretical), modest (but still quite small in absolute terms) buildups of
density are seen in bonding regions.

At any atomic nucleus in an atom, molecule, or solid, the electron
density has a finite value; for an atom we designate this p(0). In the
neighborhood of a nucleus there always is a cusp in the density owing to
the necessity for Hamiltonian terms ~4V* —(Z,/r,) not to cause blowups
in AW there. The specific cusp condition is (for example, see Davidson

1976, page 44)
a i
5ﬁtr.)l,,-u= —2Z,p(0) (1.5.3)

where p(r,) is the spherical average of p(r,).
Another important result is the long-range law for electron density,

p ~ exp [ =22 min) 7] (1.5.4)
where [, is the exact first ionization potential (Morrell, Parr, and Levy

1975; this paper also contains a generalization of Koopmans' theorem).
The corresponding Hartree—Fock result will be, from (1.3.33),

Pur — €Xp [_zt_zsmn}mr] (1.5.5)
where £,,, approximates I, by (1.3.32).

Finally, we record here certain results about electron density from the
standard first-order perturbation theory for a nondegenerate state.
Suppose the state W} is perturbed to the state W, =W} + W} by the
one-electron perturbation AV =¥, Av(r,). The energy change to first
order is

E{"= I‘I","‘ AV, dx™ = J-p.[r,}au{r.)dr.. (1.5.6)

while the perturbed wavefunction is, to first order,

W 1.5.7
& BB G
The electron-density change is then, to first order in Av,
ﬁpﬁ{‘l] - NJ’J. [‘P:'-I-'j, - ;“P{;]fﬂﬁ dl}_ dl] L dlhl
] I
=2NRe{ > MI fm""w"ds dx, dx, - - d:,,,]
Jek
ﬂpn{h]
Av(r;) dr 1.5.8
el e

where the “functional derivative™ dp/dv is defined by

Opy(r;) L Efiﬁg} E:
du(ry)  du(r)

[I J’ W ds, dx, dx, + d:N] [I . f‘-l-"ﬂ"‘lf_f ds, dx; dx, - - n'x,..-]
_nuc (EX—E))

2N? x

(1.5.9)
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This quantity is called the linear response function. The symmetry
represented in (1.5.9) is important. If a perturbation at point 1 produces
a density change at point 2, then the same perturbation at point 2 will
produce at point 1 precisely the same density change. Note that

Spy(r,) A=

Beln) (1.5.10)

All of these formulas assume that the number of electrons is fixed. For a
general discussion of functional derivatives, see Appendix A.

1.6 Hellmann-Feynman theorems and virial theorem

Let A be a parameter in the Hamiltonian and W(A) be an eigenfunction of
H. Then -
dE _(W|3H/3A|W)

di (w|w) o
(W, H(Ay) — H(A) W)
E(A,)— E(A)) = 1.6.2
(A2) — E(4y) TALH) (1.6.2)
and M "
Bl - By =[ AHZ0oAN) (1.6.3)

A (W | W)

These identities are the differential Hellmann—Feynman theorem
(formula), the integral Hellmann—-Feynman theorem (formula), and the
integrated Hellmann—Feynman theorem (formula) (Epstein, Hurley,
Wyatt, and Parr 1967). The derivative 3H/34 is written as a partial
derivative to emphasize that the integral (W|3H /34 |W) can depend on
the coordinate system chosen to describe a particular situation.

The equation (1.6.1) is a direct result of the first-order perturbation
formula for energy, (1.5.6) above. Integrating (1.6.1) from 4, to A, gives
(1.6.3). Theorem (1.6.2) can be put in a general form,

— {‘Fﬁl HA B ﬁu Nﬂ\i
(Wy | Wa)

where H, and H, are different Hamiltonians acting on the same
N-electron wave-function space, but they need not be related to each
other by a parameter A. Since Wy and W, are eigenfunctions of fy and
FI!',... then

E:A"EH

(1.6.4)

AW.=E¥, and HgWa=EyW¥, (1.6.5)
Multiply these equations respectively by W§ and W3 and integrate. Take

the complex conjugate of the second result. Subtraction then gives
(Ea— Ep) (Wa | Wa) = (Ve HA ‘Hn Wa)

Provided (Wg|W,) #0, this is equivalent to (1.6.4) [and also (1.6.1)
follows as the special case when the change is small].

Use Cartesian coordinates and in (1.6.1) let 4 be the coordinate X, of
the position of nucleus . Suppose that no fields are present except those
due to the nuclei; i.e., that there are no extra terms in (1.1.3). Then the
only terms in H that depend on X, are v and V,,,, and (1.6.1), yields,
using (1.1.9),

L A (x, — Xa)
X R K==z ey 66

This is a purely classical expression. What it shows is that the force on
nucleus a due to the other nuclei and the electrons, in some particular
Born-Oppenheimer nuclear configuration, is just what would be com-
puted from classical electrostatics from the locations of the other nuclei
and the electronic charge density (see Deb 1981). This is the famous
electrostatic theorem of Feynman (1939).

An application of (1.6.1) that we are interested in is the formula
obtained if one replaces Z, by AZ, everywhere it appears in /1 and then
computes W (1) — W(0) for a ground state. Note that the ground state of
N electrons in the absence of any nuclei has zero energy: W(0)=0.
Hence, for a ground state (Wilson 1962, Politzer and Parr 1974)

Wea 'S B D fdijf—[-:u’!—ﬂdr. (1.6.7)

a<fi 'Ruji a@ 0

Here p(r, A) is the density associated with the eigenfunction W(x, 1) for
the N-eleciron problem with scaled nuclear charges.

Note that the Hellmann-Feyman theorems (1.6.1) through (1.6.3) hold
for any eigenstate, while (1.6.7) is only true for a ground state. Equation
(1.6.7), as well as the electrostatic theorem (1.6.6), can be thought of as
foreshadowing what we will be demonstrating at length in this book: For
a ground state, the electron density suffices for the determination of all
the properties. Another essential point is that these various theorems
may or may not hold for approximate eigenfunctions. For example,
(1.6.1) holds for exact Hartree—Fock wave functions (Stanton 1962).

Another important theorem is the wvirial theorem, which relates the
kinetic energy and potential energy components of the energy in certain
circumstances, This theorem results from homogeneity properties that



— e T I I T T [F.]

may or may not be present for a particular problem in the kinetic and
potential energy components of H. The kinetic cnergy component,

T=> (-iv}) (1.6.8)
is homogeneous of degree —2 in particle coordinates. The total potential
energy component,

E E Zoly (1.6.9)
i, 1.1- i=j u w-ﬂ: R-'r,!i

is homogeneous of degree —1 in all particle coordinates. Assuming no
additional forces are acting, we then find for any eigenstate of an atom,

E=—(T)=4V) (1.6.10)

and for any eigenstate of a molecule or solid with a particular sufficient
set of internuclear distances R, = |R,4|,

(T)=-W- ER('::) (1.6.11)
and
(V)= zw+§jn(aﬂ) (1.6.12)

Proofs are elementary (Léwdin 1959). Given a normalized eigenstate W,
it makes stationary the E[W] of (1.2.1). Take a normalized scaled version
of this ¥,

W= PV2W( Ly, by, ... ERy, LRy, . L) (1.6.13)

and calculate E[W.]. This is stationary for { =1, which gives (1.6.10)
through (1.6.12). The scaling properties of the individuals components of
E[W.] are important. Using (1.1.13) and (1.1.14), these are found to be

T[¥:] = ’T¥, LR) (1.6.14)
and
V[W.]=LV[W, LR] (1.6.15)

respectively. The dependences on LR are parametric. For a comprehen-
sive review of the virial theorem, see Marc and McMillan (1985).

Note that in (1.6.13) both electronic and nuclear coordinates are
scaled. Another type of scaling, of electronic coordinates only, is
important for the purposes of this book. Let

W, = A" W(ir, A, ... Ry, Ray .. .) (1.6.16)

Then we find
T[W,) = A*T[¥,) (1.6.17)

and
Vel W3] = AV, [W,] (1.6.18)

though this time V. for molecules does not scale simply. The scaling of
(1.6.16) produces a simple dilation of the electronic cloud without
changing its normalization; the scaling of (1.6.13) changes nuclear
positions as well. For atoms, the two scalings are equivalent.



