One-electron atoms: fine structure, hyperfine
structure and interaction with external
electric and magnetic fields

Our discussion of the energy levels and wave functions of one-electron atoms in
Chapter 3 was based on the simple, non-relativistic Hamiltonian
o PZ VA eZ
2u  (@meg)r

where the first term represents the (non-relativistic) kinetic energy of the atom
in the centre of mass system, and the second term is the electrostatic (Coulomb)
interaction between the electron and the nucleus. Although the energy levels
obtained in Chapter 3 from the Hamiltonian [5.1] are in good qualitative
agreement with experiment, the very precise measurements carried out in
atomic physics demonstrate the existence of several effects which cannot be
derived from the Hamiltonian [5.1] and require the addition of correction
terms to [5.1]. In this chapter we shall discuss several of these corrections and
we shall also consider the problem of the interaction of one-electron atoms with
external (static) electric and magnetic fields.

We begin by analysing the relativistic corrections to [5.1], which give rise to a
splitting of the energy lev.  known as fine structure. Next, we discuss the effect
of an external magnetic fic.d (the Zeeman effect) or electric field (the Stark
effect) on the spectra of one-electron atoms. We then describe a subtle effect
called the Lamb shift, which displaces certain of the fine structure components
and is therefore responsible for additional splittings of the energy levels.
Finally, we consider various small corrections such as the hyperfine structure
splitting and the volume effect, which take into account the fact that the nucleus
is not simply a point charge, but has a finite size, and may possess an intrinsic
angular momentum (spin), a magnetic dipole moment, an electric quadrupole
moment, and so on.

(5.1]

5.1 FINE STRUCTURE OF HYDROGENIC ATOMS

The fine structure of the energy levels of hydrogenic atoms is due to relativistic
effects. In order to analyse these effects we therefore need for the electron a basic
wave equation which satisfies the requirements of special relativity as well as
those of quantum mechanics. This is the Dirac equation, which is discussed
briefly in Appendix 7, and which provides the correct relativistic wave equation

for electrons.
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One-electron atoms 5.1

The most rigorous way of obtaining the relativistic corrections to the
Schrédinger (Bohr) energy levels of one-electron atoms is to solve the Dirac
equation for an electron in the central field V(r) = —Ze?/(41rey)r of the nucleus
which is assumed to be of infinite mass and at the origin of the coordinates. It
turns out that the Dirac equation for a central field can be separated in spherical
polar coordinates and that the resulting radial equations can be solved exactly
for the Coulomb potential V(r) = —Ze?/(4meg)r [1]. However, these calcula-
tions are rather lengthy and since the relativistic corrections are very small
(provided that Z is not too large), it is convenient to use perturbation theory,
keeping terms up to order v/¢? in the Dirac Hamiltonian. We shall therefore
start from the Hamiltonian [A7.65] of Appendix 7 which we rewrite as

H=H,+H | [5.2]
where
pZ ZeZ

Ho = S ™ Gmegyr (53]

is simply the Hamiltonian [5.1] with u = m [2] and

H =H) + H, + H; [5.4]
with
»*
H = -+ _ ‘ [5.5]
1 8m’c?
1 1dV
f = —————1VL " 5.6
He 2m?c? r dr LS 15.6]
and
wh? [ Ze?
H,=—5=|——1|6d 5.7
> 2mc? (47‘1‘80) @) [5.7]

The physical interpretation of the three terms which constitute H' is
discussed in Appendix 7. We simply note here that H] is a relativistic correction
to the kinetic energy, H) represents the spin-orbit interaction and H3 1s the

Darwin term.
Before we proceed to the evaluation of the energy shifts due to these three
terms by using perturbation theory, we remark that the Schrédinger theory

[1] See for example Bethe and Salpeter (1957).

[2] For the sake of simplicity we shall ignore all reduced mass effects in discussing the fine structure
calculations. It is of course straightforward to incorporate the reduced mass effect in f; and in
the corresponding unperturbed energy levels E, by replacing the electron mass m by its
reduced mass u. On the other hand, the reduced mass effects arising in &’ cannot be obtained
by just replacing m by u in the results of the perturbation calculation. Fortunately, these latter
reduced mass effects are very small since H’ is already a correction to Hy.
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5.1 Fine structure of hydrogenic atoms

discussed in Chapter 3 does not include the spin of the electron. In order to
calculate corrections involving the spin operator — such as those arising from
H; — we start from the ‘unperturbed’ equation

HOd’nln'zlmS = En'vbnlmlm_‘ [58]

where E, are the Schrodinger eigenvalues [3.29] (with u = m) and the zero
order wave functions s, », are modified (two-component) Schrodinger wave
functions (also referred to as Pauli wave functions or ‘spin-orbitals’) given by

lfl’nlm,ms(q) = l!/nlmf(r)/\/l/2,7‘?2j [59]
where ¢ denotes the space and spin coordinates collectively. The quantum
number m; which can take the values —I, —/ + 1, ..., + [ is the magnetic

quantum number previously denoted by 7 [3], ¢, (r) is a one-electron Schrédin-
ger wave function (see [3.48]) such that

HO'vanm,(r) - Enwnlm,(r) [5 . 10]

and x1/2,, are the spin eigenfunctions for spin one-half (s = 1/2) introduced in
Section 2.5, with m, = +1/2. We recall that x;,2,,, is a tWo-component spinor
and that the normalised spinors corresponding respectively to ‘spin up’
(m, = +1/2) and ‘spin down’ (m, = —1/2) are conveniently denoted by

E((l)) and BE(‘:) [5.11]

Since H, does not act on the spin variable the two-component wave functions
[5.9] are separable in space and spin variables. It is also worth noting that we
now have four quantum numbers (n, {, m;, m,) to describe a one-electron atom,
the effect of the spin on the “ ~perturbed’ solutions being to double the
degeneracy, so that each Schrodin,_ - energy level E, is now 2n* degenerate.

Energy shifts

We now calculate the energy corrections due to the three terms [5.5]-{5.7],
using the Pauli wave functions as our zero-order wave functions.

4

P
8m3c?
Since the unperturbed energy level £, is 2n* degenerate, we should use the
degenerate perturbation theory discussed in Section 2.8. However, we first note
that H| does not act on the spin variable. Moreover, it commutes with the
components of the orbital angular momentum (see Problem 2.12) so that the

1. Hy = - (relativistic correction to the kinetic energy)

———

[3] When no confusion is possible, we shall continue to write m instead of m, for the magnetic
quantum number associated with the operator L.
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5.1

One-electron atoms

perturbation H is already ‘diagonal’ in [, m; and m, . The energy correction AE,
due to H| is therefore given in first-order perturbation theory by

p4
AE, = <‘vbnlm,mj _m l!’nlm,ms>
p4
= ('J’nlm, _‘8‘1;?6_2 (pbnlm,>
1 2
- 5.2 ('»!/nlm1|T |d’nlm,> [512]

2mc?
where T = p?/2m is the kinetic energy operator. From [5.3] we have

Ze?
(dmeg)r

1 <¢nlm( (HO (4w 80)1‘) (HO (47reg)r

T =H, + [5.13]

and therefore

e ¢n1ml>

1 Ze? )\ /1 Ze2 V2 /1
= — E2 + 2E - + — 5.14
2mc? [ " " (47750) <r>,,,m! (47780) <r2>n,m;| [5.14]

where we have used [5.10]. From the results [3.30], [3.71] and [3.72] (with
w = m) we finally obtain

1 mci(Za)? |? Zer \ me*(Za)? Z
AE, = — 2 2 — 2 Z )
2mc 2n 47reg 2n aogn
Z€2 2 ZZ
_|_
(471'80) atn’(l + 1/2)}
1, (Ze)? (Za) [3 n
2 n* w4 1+ 1/2
S L s.15] |
S |4 1+ 172 [5.15] i
2 Hy=— =13V, s (spin-orbit term)
- H = T ar pin—orbit term |
We shall first rewrite this term more simply as |
i
Hj = &)L - S [5.16] |

where we have introduced the quantity 1

_ 1 1dv
€ = 2mic? r dr

;5177 S
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5.1 Fine structure of hydrogenic atoms

In our case V(r) = —Ze?/(4megy)r, so that

1 Zet 1
2m*c? dreg ? [5.18]

&r) =

Since the operator L does not act on the radial variable r nor on the spin
variable, and commutes with the components of L, we see from [5.16] that L?
commutes with H}. It follows that the perturbation H3 does not connect states
with different values of the orbital angular momentum /. For a given value of n
and [ there are 2(2] + 1) degenerate eigenstates of H, (the factor of 2 arising
from the two spin states), so that the calculation of the energy shift due to H3
requires the diagonalisation of 2(2/ + 1) x 2(21 + 1) submatrices.

This diagonalisation is greatly simplified by using for the zero-order wave
functions a representation in which L - S is diagonal. It is clear that the
functions Y, given by [5.9], which are simultaneous eigenfunctions of the
operators Hy, L2, S%, L_ and S, are not adequate because L - S does not
commute with L, or §,. However, we shall now show that satisfactory
zero-order wave functions may be obtained by forming certain linear combina-
tions of the functions Y, - To this end, we introduce the total angular

momentum of the electron

J=L+S [5.19]
and we note that
JF=L>+2L-S+8§° [5.20]
so that
L-S=4J*-L*-8% [5.21]

Consider now wave functions i, +hich are eigenstates of the operators fHy,
L2, S2, J? and ¥,, the correspona ¢ eigenvalues being E,, I/ + DA?,
s(s + DA%, j(j + DA? and mg#i. In this particular case we have s = 1/2 and
therefore (see Section 2.5)

j=1=x1/2, [#0

5.22
7=1/2, =0 [5.22]

and

mp= gy i+ L. ..+ [5.23]

By using the methods of Section 2.5 and Appendix 4, we can form the func-
tions Y, from linear combinations of the functions i, [4]. Since L -S
commutes with L%, §%, J? and %, it is apparent that the new zero-order wave
functions im, form a satisfactory basis set in which the operator L - § (and

[4] Specifically, if we use the Dirac notation so that the ket inlsmm,) corresponds to the wave
function ¢, m and the ket |nlsjim;) to the wave function y,, (With s = 1/2), we have
A ndsimy = D (Ismmy| imy) |nlsmm)

mj,m,

The Clebsch-Gordan coefficients (Ismym,|jm,) are not needed in the present calculation since we
are only interested in expectation values.
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One-electron atoms Rkl 51

hence the perturbation H3) is diagonal. Using [5.16] and [5.21], we see that for
[ # 0 the energy shift due to the term HY is given by
'J’nljmj>
2

€I - L - §7)
p N 3 i
~Liem|io -+ d (5,241

AE; = <¢,,,,-,,E,_

where (£(r)) denotes the average value of &(r) in the state Ut - From [5.17] and
[3.73], we have

1 Ze? 1
€O = 27 (zr) <—>

2 3
_ 1 Ze : VA [5.25]
2m2ct \dmeo) agn’l(l + 1/2)7 + 1)

Thus, for I # 0, we obtain from [5.24] and [5.25]

mc? (Za)* l for j=1+1/2
AEZ = 3 X .
Al + 1/2)A+ 1D —1l—1 for j=1-1/2
(Za)? { for j=1+1/2
= —-FE X .
20l + 1/ + 1) {—l -1 for j=1-1/2 [5.26]

For / = 0 the spin—orbit interaction [5.16] vanishes and therefore AE; = 0 in
that case.

82 [ Ze?
3 Hy = — (e

=552 47780) é(r) (Darwin term)

This term does not act on the spin variable, is diagonal in I, m; and m, and
applies only to the case I = 0. Calling AE3 the corresponding energy correction
and using the result [3.60], we have

wh? Zet

AE; = —5—~—— ()|,
3= I Ao (100! 6(1) | n00)
mh? Ze?
= - 0){?
Zmzcz 47780 |dln00( )'

1, (ZaP (Za)
2 me n® n
Z 2
_ g’ :) , 1=0 [5.27]

We may now combine the effects of H;, H; and H} to obtain the total energy
shift AE = AE; + AE, + AE; due to relativistic corrections. From [5.15],
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5.1 Fine structure of hydrogenic atoms

[5.26] and [5.27] we have for all I

1 2 (Za)?
PRI X TR

2 ”n n j+1/2 4
L Z* n 3
=Bz (j + 1/2 Z) [5.28]

where the subscripts nj indicate that the correction depends on both the
principal quantum number # and the total angular momentum guantum
number j, withj = 1/2,3/2,. .. n — 1/2. To each value of j correspond two
possible values of / given by ! = j = 1/2, except forj = n — 1/2 where one can
only have I =7 - 1/2=n— 1.

Adding the relativistic correction AE,; to the non-relativistic energies E,, , we
find that the energy levels of one-electron atoms are now given by

- Za [ n 3
E, = E, [1+ = (j+ 7 Z)] [5.29]

so that the binding energy |E,;| of the electron is slightly increased with respect
to the non-relativistic value |E,|, the absolute value |AE, | of the energy shift
becoming smaller as n or j increases, and larger as Z increases. The formula
[5.29] is easily shown to agree through order (Za)® with the result

7 5112
Eet = mcz{{l + (n 124G _:[1/2)2 _Zzaz]llz)] - 1} [5.30]

obtained by solving the Dir equation for the potential V(r) =
—Ze? /(dreg)r [1]

Fine structure splitting

Starting from non-relativistic energy levels E, which are 2»? times degenerate
(the factor of two arising from the spin) we see that in the Dirac theory this
degeneracy is partly removed. In fact, a non-relativistic energy level E,
depending only on the principal quantum number # splits into » different levels
in the Dirac theory, one for each valuej = 1/2, 3/2, . . . n — 1/2 of the total
angular momentum quantum number j. This splitting is called fine structure
splitting, and the n levels y = 1/2,3/2, .. .n — 1/2 are said to form a fine
structure multiplet. We note that the dimensionless constant « = 1/137 controls
the scale of the splitting, and it is for this reason that it has been called the fine
structure constant.

The fine structure splitting of the energy levels corresponding ton = 1, 2, 3
is illustrated in Fig. 5.1. We have used in that figure the spectroscopic notation
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One-electron atoms i ‘5

n=3 _0.018cm™

= { _____ - .
—0.036 cm ™! 3d,, (J = 5/2, l= 2) .

3 3p,, (G =3/2,1=1);3dy, (j=3/2,1=2) |

0.108 cm™! ,

35,=12,I=0)3p,,U=12,1=1)

2p(j=3/2,1=1)

2s,(j=12,1=0);2p,G=12,1=1)

1s,, (j = 1/2,1=0)

(@) (b)

5.1 Fine structure of the hydrogen atom. The non-relativistic levels are shown on the left in column
(a) and the split levels on the right in column (b), for n = 1, 2 and 3. For clarity, the scale in each
diagram is different.

nl; (with the usual association of the letters s, p, d, . .. with the values
I=0,1,2,...and an additional subscript for the value of j) to distinguish
the various spectral terms corresponding to the Dirac theory [5].

It is important to emphasise that in Dirac’s theory two states having the same
value of the quantum number # and j but with values of / such that/ = j = 1/2
have the same energy. The parity of the solutions is still given by (—)". Thus to
each value of j correspond two series of (27 + 1) solutions of opposite parity,
except for j = n — 1/2 where there is only one series of solutions of parity
(=)*~1. It is also worth remarking that although the three separate contributions
AE., AE; and AE; depend on [ (see [5.15], [5.26] and [5.27]), the total energy
shift AE,; (given by [5.28]) does not! This is illustrated in Fig. 5.2, where we
show the splitting of the n = 2 levels of atomic hydrogen due to each of the
three terms H{, 5 and H 3, as well as the resulting degeneracy of the 2s;,; and
2py 2 levels. We shall see in Section 5.4 that this degeneracy of the levels with
!l =37+ 1/2 is actually removed by small quantum electrodynamics effects,

[5] A similar notation with capital letters, such as 18,,,, 25,3, 2Py,3, 2P3,2, etc., is also frequently
used. We shall reserve capital letters for atomic systems with more than one electron.
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5.1 . Fine structure of hydrogenic atoms

5);
0.21cm™! Pi: 0.12cm™ 0.73 em™ 0.09¢cm™
n=2 - — - ———SI/ZT_-’—)_L__T)!:———-‘—_FP’ o
Piz > P32 . P \ Pi2s P2 ]&46 cm™!
1.19cm™ 0.24cm™ Sin Piz
8,2
AE] AE; AE3 AE=AE1+AE2+AE3

5.2 The contributions AE;, AE,, AE; to the splitting of the n = 2 level of hydrogen.

known as radiative corrections, which are responsible for additional energy
shifts called Lamb shifts.

Another interesting point is that the three relativistic energy shifts AE,, AE,
and AE; we have obtained above have the same order of magnitude, and must
therefore be treated together. This is a special feature of hydrogenic atoms. For
many-electron atoms (and in particular for alkali atoms) we shall see in
Chapter 7 that it is the spin—orbit effect (due here to the term H}) which is
mainly responsible for the fine structure splitting.

According to [5.28], for any Z and n # 1, the energy difference between the
two extreme components of a fine structure multiplet (corresponding respec-
tively to the values j; = n — 1/2 and j, = 1/2) is given by

. ) n—1
SE(j1 = n = 1/2, j2 = 1/2) = |E,|Za)’ —

2Z%n -1
_ = F- (n4 ) wu., n#F 1  [5.31]
2n \
We may also use [5.28] to obtain for any Z, n # 1 and ! # 0 the energy
separation between two levels corresponding respectively to j; =7 + 1/2 and
jo =1 — 1/2. The result is
. ) (Za)?
SE(jy =1+ 1/2,,b=1-1/2) = |E,| —"—
(71 /2, 12 /2) = | ‘nl(l-i-l)
_ A
C 2230 + 1)

For example, in the case of atomic hydrogen the splitting of the levels j = 3/2
andj = 1/2 for n = 2 and n = 3 is, respectively, 0.365 cm ™! (4.52 x 107> eV)
and 0.108 cm™' (1.34 x 107> eV), while the splitting of the levelsj = 5/2 and
J=3/2forn=3is0.036 cm ! (4.48 x 10~%eV) as shown in Fig. 5.1.

a.u. [5.32]

Fine structure of spectral lines
/

The set of spectral lines due to the transitions nlj — n'l’j’ between the fine
structure components of the levels nl and n’l’ is known as a multiplet of lines.
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One-electron atoms ' o 5.1

Since the electric dipole operator D = —er does not depend on the spin, the

selection rule derived in Chapter 4 for the quantum number [ (in the dipole . §

approximation) remains
Al = =1 [5.33]

from which it follows that the selection rule with respect to the quantum
number j is

Aj =0, =1 [5.34]

Using [5.33] and [5.34], it is a simple matter to establish the character of the
fine structure splitting of the hydrogenic atom spectral lines. For example, we
see from Fig. 5.3 that the multiplet np—n’s has two components. Thus each line
of the Lyman series (lower state # = 1) is split by the fine structure into a pair of
lines called a doublet, corresponding to the transitions

np1/2—181/2, nps2—1si 2

This is illustrated in Fig. 5.4 for the Lyman « line (upper state n = 2).
Referring to Fig. 5.3, we see that the multiplet np—n's has two components,

while the multiplet nd—n'p has three components. Thus, in the case of the

Balmer series (lower state n = 2) the following seven transitions are allowed:

np1/2—281/25 np3/—2812

nsy/2—2P1/25 ns1,2-2pPs;2

nds2—2p1/25 nds/»—2paa,
nds;;—2p3/2

nd,,
np:; nd;,
npi:2
n'py, :
n's,; . nlpu
(a) (b)

5.3 Allowed transitions in (a) the multiplet ap —n’s and (b) nd-n’p.
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5.1 Fine structure of hydrogenic atoms

=372
n=2 ;=112
n=1 j=172

S p

5.4 Allowed transitions between the #n = £ and n = 1 levels of atomic hydrogen giving rise to the
Lyman alpha doublet (L,).

However, since the levels ns; /, and np, 2 coincide, as well as the levels nps ,2 and
nds/;, each Balmer line only contains five distinct components. This is
illustrated in Fig. 5.5 for the case of the fine structure of the H, line, i.e. the red
line of the Balmer series at 6563 A, corresponding to the transition between the
upper state n = 3 and the lower state n = 2.

Because the energy differences [5.31] or [5.32] rapidly decrease with increas-
ing n, the fine structure splitting of a spectral line corresponding to a transition
between two levels of different # is mainly due to t'  fine structure of the lower
level, with additional (finer) fine structure arising fi 1 the smaller splitting of
the upper level. For example, each line of the Balmer series essentially consists
of a doublet, or more precisely of rwo groups of closely spaced lines. The distance
between these two groups is approximately given by the fine structure splitting
of the lower (n = 2) level (i.e. about 0.365 cm 1) and this distance is constant
for all the lines of the series. Within each of the two groups the magnitude of
the (small) residual splitting due to the fine structure of the upper level rapidly
falls off as 7 increases, i.e. as one goes to higher lines of the series. Similarly,
each line of the Paschen series (lower state n = 3) consists of three groups of
closely spaced lines, etc. Finally, we remark that for hydrogenic ions the fine
structure splitting is more important than for hydrogen since the energy shift

AE,; given by [5.28] is proportional to VAS

Intensities of fine structure lines

Since the radial integrals in [4.85] are the same for both the transitions
nps/2—n's; /2 and np2—n's1 /2, it is easy to obtain from the angular parts of those
integrals (that is from angular momentum considerations) the ratio of the two
transition probabilities, which is found to be equal to 2 (Problem 5.1). More
generally, the ratios of the transition probabilities for the most important special
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One-electron atoms

(a)

|

] 1
(a) (b) ()  @© O@& v

.

v

+———0.36cm

(b)
5.5 (a) Transitions contributing to the Balmer alpha (H

of atomic hydrogen.
(b) The relative intensities of the lines (a), (b)—(g). Note that (b) and (g) have the same upper

level, so that the wave number difference between the lines is determined by the 2py/., 2Ps3/2
energy difference and is 0.36 cm™ I In the same way, the wave number difference between lines
(a) and (e) is also 0.36 em~!. We note that the lines (d) and (e) should coincide according to

Dirac theory, as well as the lines (f) and (g).

) line between then = 3 and n = 2 levels
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5.2

cases are (Bethe and Salpeter, 1957)
for sp transitions: s;/,—Ps/2:S1/2—P1/z = 2:1
pd transitions: ps;;—ds;2:ps/2—ds/z2:p1/2—dssz = 9:1:5

df transitions: ds;,—f7/2:ds/—fs/2:d3/2~fs,2 = 20:1:14
[5.35]

Under most circumstances the initial states are excited in proportion to their
statistical weights, that is the (2f + 1) degenerate levels corresponding to an
initial state with a given value of j (but differing inm; = —j, —j + 1,. . . + i)
are equally populated. In this case the ratios of line intensities are the same as
those of the corresponding transition probabilities. The relative intensities of
the fine structure components of the H, line are shown in Fig. 5.5.

Comparison with experiment

The fine structure splitting of the spectral lines of atomic hydrogen and of
hydrogenic ions (in particular He™) has been the subject of many spectroscopic
investigations. The experimental results are in good semi-quantitative agreement
with the formula [5.28] obtained from the Dirac theory. Nevertheless, and in
spite of the fact that precise optical measurements of fine structure are very
difficult to perform, small deviations from the theoretical predictions of [5.28]
were observed as early as 1934. In particular, detailed experimental studies of
the H,, line of atomic hydrogen indicated that the energy separation of the 2s;/;
and 2p;,, levels is not exactly zero, as predicted fre—1 the Dirac theory (see
[5.28] or [5.30]) but is about 10 per cent of the fine ructure splitting of the
n = 2 levels. However, the Doppler broadening of the spectral lines prevented
precise results being obtained from optical spectroscopy, and the situation
remained ambiguous until the first measurements of Lamb and Retherford were
published in 1947. Using new methods of microwave spectroscopy, Lamb and
Retherford demonstrated in a decisive way the existence of an energy difference
between the two levels 2s;,; and 2p,,;. This ‘Lamb shift’, to which we have
already alluded in the discussion following [5.30], will be considered in-
Section 5.4 after we have familiarised ourselves with the behaviour of hyd-
rogenic atoms in external magnetic and electric fields.

5.2. THE ZEEMAN EFFECT

In 1896, P. Zeeman observed that the spectral lines of atoms were split in the
presence of an external magnetic field. In order to explain this effect, we shall
discuss in this section the interaction of hydrogenic atoms with constant
magnetic fields, which can be taken to be uniform over atomic dimensions. The
vector potential A can then be written as

A=1® x1) [5.36]
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One-electron atoms "R 5.2

where 3 is the constant magnetic field, which satisfies the relation ® = V X A.
If B is directed along the Z axis, the components of A are
(—yB/2, +xB/2, 0).

The non-relativistic Schrodinger equation for a hydrogenic atom in the
presence of a constant magnetic field is given by (see Appendix 6 and
Section 4.1)

{ A, Ze ihe e

2
B I
Y G m YT ZmA}dl(r) Eu()  [5:37]

where reduced mass effects have been neglected, A is given by [5.36] and we
have used the fact that V- A = 0. |
The linear term in A becomes, in terms of B

the the
A V=——r (BXD'V
m 2m
the
= —®R(xXV)
2m
-l a-L 5.38]
© 2m (5.
where
L=1txp=—ih{r XxV) [5.39]

is the orbital angular momentum of the electron. The quadratic term in A
appearing in [5.37] can be reduced as follows:

2 2
L A= —— (@ X 1)
8m

2

- '8% (322 — (B - 0] [5.40]

The relative magnitude of the two terms [5.38] and [5.40] can now be
estimated. Assumuig that the dimensions ot the atomic system are of the order
of ay, the Bohr radius of hydrogen, the quadratic term is of the order
2aih? /8m, while if we are dealing with states of low orbital angular momentum
(say about 7) the linear term is approximately given by eh%/2m. The ratio of the
quadratic to the linear term is then

eash

=~ RB107° [5.41]

where B is expressed in Tesla (T). In the laboratory, the fields encountered do
not exceed 10 T, so that for most purposes the quadratic term is negligible.

—_
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5.2 | The Zeeman effect

The linear term [5.38] corresponds to the interaction energy of a magnetic
field B with a magnetic dipole moment M, if M is defined as the operator

M= —L=—ugL/h [5.42]
2m

where

eh
MB = m [5.43]
m

is called the Bokr magneton and has the value 9.27408 x 10~** joule/tesla or
m2A. The interaction energy [5.38] then takes the form

Hi=-M" %R [5.44]
It is useful to express H{ in various units. For example
H; =213 x107°® - Lau
= 0.4669 B L/Acm ™' [5.45]
where in both cases % is to be given in Tesla.
Until this point we have not tzken into account the intrinsic magnetic

moment of the electron, revealed by experiments of the Stern—Gerlach type (see
Chapter 1). This intrinsic magnetic moment, due to the electron spin, is given

by

M= —g—8 / [5.46]
2m
or
M, = —gupS/h [5.47]

where S is the spin operator of the electron and g; its spin gyromagnetic ralio.
Dirac’s relativistic theory predicts for g, the value g, = 2 (see Appendix 7)
which is in very good agreement with experiment [6]. The spin magnetic
moment M, gives rise to an additional interaction energy

Hy=—-M, B = gusB S/ [5.48]

The complete Schrodinger equation for a one-glectron atom in a constant
magnetic field, including the spin—orbit interaction, but neglecting the reduced
mass effect, the relativistic kinetic energy correction, the Darwin term and the

quadratic (A%) term, is (with g, = 2)
[ nt_, Zé

2m (47e0)r

+ AL S + —“ﬁﬁ (L +28) - %]4@ = Eg(r) [5.49]

—_—

[6] The corrections to the Dirac result g, = 2 come from quantum electrodynamics, which yields a
value g, = 2(1 + a/27 + * - +) in excellent agreement with the experimental result

g = 2 X 1.001 159 657.
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where &) is given by {5.18] and ¢(r) is now a ‘spin-orbital’ with two
components.

The nature of the solution depends on whether the magnetic interaction is
greater or less than the spin—orbit interaction. We shall first discuss the former
case (strong magnetic fields) and then analyse the so-called ‘anomalous Zeeman
effect’ which corresponds to weak fields.

Strong fields

The fine structure splitting of the n = 2 level of hydrogenic atoms is
(0.365 Z* cm™! and decreases for larger n like n~ 3. We see from [5.45] that the
magnetic interaction energy will be greater than this for field strengths & > Z*
Tesla. By laboratory standards, these are very strong fields even for hydrogenic
atoms with small Z, but such fields can occur in certain astrophysical situations,
such as in some stars. In the strong field limit, we first solve the Schrédinger
equation without the spin—orbit coupling, which can be subsequently treated
as a perturbation. Taking ® to be along the Z axis, we have

ﬁz 2 Ze2 . _ “B%z

The unperturbed hydrogenic spin-orbitals ,zm defined by [5.9] are
eigenfunctions of L, and S, and satisfy this equation 1if

E = En + H’B%z(ml + zms)n mg = i1/2 [5'51]

The introduction of the magnetic field does not remove the degeneracy in /, but
by providing a preferred direction in space, it does remove the degeneracy in m;
and m,, splitting each level with a given n into equally spaced terms. This is
illustrated in Fig. 5.6 for the case of a p level (I = 1. However, the energy of
the states with m; = +1 and m, = —1/2 coincides with those with m; = -1
and m, = +1/2. In the strong-field limit we are considering here (no spin—orbit
coupling) the orbital and spin angular momenta are constants of the motion and

m, my
— 1 +1
MB %ZI
Y2 0
np—— = -1, +1
-1z 0

No field Strong field
5.6 The splitting of a p level into five equally spaced levels by a strong magnetic field.

——
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5.2 The Zeeman effect

the eigenfunctions, written in Dirac notation, are of the form |nim;sm,), with
s =1/2 and m, = *1/2.

The selection rules for electric dipole transitions require Am, = 0 and
Am; = 0, +1. Thus the spectral line corresponding to a transition n — n’ is split
into three components. The line corresponding to Am; = 0 has the original
frequency v, and is called the 7 line, while the two lines with Am; = +1 are called
o lines and correspond to frequencies

vr_z_F’n = Vo T VL [552]
where
R
yy = ”Bh : [5.53]

is known as the Larmor frequency. This splitting is called the normal Zeeman effect
and the three lines are said to form a Lorentz triplet (see Fig. 5.7). Apart from the
case of very strong fields, Lorentz triplets can be observed in many-electron
systems for which the total spin is zero, as in this case the spin—orbit coupling
vanishes.

ny

+2

+1

-1

(m,= +1/2)

5.7 The normal Zeeman effect. In a strong magnetic field nine transitions are possibie between the
split levels consistent with Am, = 0 or =1 and Am, = 0. Of these, there are only three different
frequencies and the lines form a Lorentz triplet. The frequencies of transitions associated with
m, = —4 are the same as those for m, = +4.
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The polarisation of the radiation in each of the emission lines has interesting 1
properties. The transition rate for spontaneous emission of radiation described 1§

by a polarisation vector € is given by [4.70], narmely ]

1 &
ap A2 = ( )wgaté * Ty” AQ

27hc? \ 41rey
= Clwge)| € * Tpe!* A [5.54a]
where we have set
Clwra) = 5= ( d )wza [5.54b] |
2mhe’ \ d7eg .

The vector £ can be expressed in terms of two independent vectors €, and &; |
as in [4.95], where &;, €; and k form a right-handed system of axes (see [4.96]). .
If we take (as can always be done) &, to lie in the (X, Y) plane and if (@, ®) are |
the polar angles of k (see Fig. 5.8), we have |

(ép), = cos O cos P; (&), = cos O sin &3 (), = —sin ©@
(é;), = —sin &; (é2), = cos @; (&), = 0 [5.55]
Consider first the  line, with Am; = 0. From the discussion given in

Section 4.5 we see that in this case x,, = ¥», = 0 and we are only concerned
with 2;,. The transition rate for emission in the solid angle d{) of a photon with

Z
Y
k
|
|
&
8] {
[
I
| »
~o | Y
~o :
™~
)] \\\ |
~

X é

5.8 The unit vectors &,, é; and k form a right-handed set. The polar angles of k are (@, @) and &,
lies in the XY plane, &, pointing downwards.

o
212



5.2 | The Zeeman effect

polarisation &, is then
s A = Clwp,) sin® O |z,,]% dQ [5.56]

and the rate is zero for emission of a photon with polarisation &,. When the light
is viewed longitudinally, so that k is in the direction of the magnetic field (which
is parallel to the Z axis), ® = 0 and the 7 line is absent. In transverse
observation (® = 7/2), in a direction at right angles to the magnetic field, the
radiation is plane polarised with £ = &, in the direction of the negative Z axis.

Let us now consider the case in which Am;, = m; — m; = —1 which corre-
sponds to the amplitude (see [4.81]-[4.84]))

= [5.57]

* 71
8—1[n'l'm,—l;nlmj

1 1 .
— (&, +18) —= (Xpa — Wiq
\/5( tgy)\/i b yb)

The transition rate for emission of a photon with polarisation € = &, is then

Wik(h) 462 = Clay,) |25 cos @ & 2 75 (B0 “d0 (5.59)
and that for polarisation € = &; is
i 12 2
a(2) dQ = Clws,) “ﬁ e 75" (Xpa = pa)| A2 [5.59]

Summing over both independent polarisation directions, the transition rate for
the line corresponding to Am; = m; — m; = —1, which is known as the o line,
1s :

2

dQ  [5.60]

1 1

Wie(a™) dQ = C(wba)i (1 + cos’ @) 7 (Xpe = Wpa)

In transverse observation ® = 77/2 and the x and y components of &; vanish.
In this case the o' line is plane polarised with € = é,, where é; liesin the (X, Y)
plane. In contrast, in longitudinal observation along the direction of the
magnetic field, we see from [4.102] that the radiation is left-hand circularly
polarised, that is the emitted photon has helicity +#.

In the same way, the transition rate for the o line corresponding to
Am; = m{ — m; = +1 is given by
2

dQ [5.61)

1 1 )
Wip(o™) dQ = Clwy,) 3 (1 + cos? GDIf (Xpa T Wa)

The & line is right-hand circularly polarised when viewed along the direction
of the magnetic field and is plane polarised in transverse observation.

The preceding discussion of the polarisations of the ¢ and 7 components is
illustrated in Fig. 5.9. It is easily shown (Problem 5.3) that in the transverse
direction the intensity of the 7 component is twice that of each « component.
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One-electron atoms 5.2

(a) Longitudinal observation (7 line absent)

B, K k
Photon Photon
& with helicity +% with helicity —%
left-hgnd circularly right-_hand circularly
Direction of magnetic polarised polarised

field along Z axis ot line o line

{b) Transverse observation

Z
B,
é
Direction of magnetic Y
field along Z axis P
X .

o', o lines, with k' 7 line with kin XY plane
and #in XY plane and & along negative Z axis

5.9 Polarisations of photons emitted in the direction of a magnetic field, or at right angles to a
magnetic field.

The Paschen-Back effect

At field strengths for which the spin—orbit interaction is appreciable, but still
small compared with the term in 9 in [5.49], it can be treated in first order
perturbation theory. We see that the perturbation is just {(L - S, and its
contribution to the total energy is therefore

AE = J drr?[R,,(NTFED <l-2-m;ms L. Sll—z-mlms>
0
= A, mmg , [ 7é 1 [562]

while AE = 0 for s-states (! = 0). The quantity A, is given by

A = 1 r drr’[Ru (NI &r)

0

272 1
- 27 E 140 (5.63)

no " 1
[ (l + —) I+ D
2
The degeneracy in / is removed, as we expect. The energy difference between

levels nim;, and n'l'm; when m, = mg 1s

8E = E, — E, + #’B%z(m} —my) + Aprmy — Aaml""l)'ns [564]

This expression gives the frequencies SE/h of the observed lines, with

I
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Am, = mj — m, restricted to the values 0, =1. The observed splitting in this

case is known as the Paschen—Back effect. ?E‘“
il

;

i
i

$

Weak fields: the anomalous Zeeman effect

For historical reasons the case of a weak magnetic field is known as the
anomalous Zeeman effect, although in fact this effect is the one most commonly
encountered. In the early days of spectroscopy, before the electron spin was
discovered, the normal Zeeman effect was predicted, on classical grounds, but
the observations did not conform to the predictions and were said to be
‘anomalous’. The explanation was finally given in terms of quantum mechanics
and the electron spin.

When the interaction caused by the external magnetic field is small compared
with the spin—orbit term, the unperturbed Hamiltonian can be taken to be

2 2

i & Ze + &L - S [5.65]

2m . (dmeg)r

H():_

The unperturbed wave functions are eigenfunctions of L%, S2, J?and J,, but
not of L, and S,. They are therefore products of radial functions times the
‘generalised spherical harmonics’ (see Appendix 4)

o‘y_;;n, = 2 (lsmlmsljm])Ylml(H) d))Xs,m: [566]

"y,

where (lsm;m,|jm;) are Clebsch—Gordan coefficients and s = 1/2.
Taking the magnetic field 3 to be along the Z axis, the perturbation is

Hﬁ

2L+ 250,

B
. _?L_ (]z + Sz)%z [567J
The additional energy due to the magnetic interaction H' is thus

AE = pgB.m; + %E B 2 J dQ (YT RS Y [5.68]
spin
where we have made use of the fact that &%, is a normalised eigenfunction of

¥. belonging to the eigenvalue mjf.

Fither of two methods can be used to evaluate the second term in [5.68].
| 1. The most straightforward procedure is to use the explicit expressions for the
Clebsch—Gordan coefficients (11/2m;m|jm;) given in Appendix 4. Setting
j=1=%1/2, we have

p
1

. [ +m + 1/2\'/?
1 @ﬁﬁféz,m, _ ( le+ 1 ) Yy m- 17200 $)x1/2,172
‘ N
| \
j ( 2[1+ 1 ) Yz,m,+1/2(9: dx1/2,-1/2 [5.69a]
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and

_ I —m + 1/2\'?
Yipsm = “( le+ I ) Yym 172005 $)x1/2,172

I +m;+ 1/2
20+ 1

12
) Y+ 172005 @X1/2,-172 [5.69b]

from which one readily obtains

pEJ dO WIS = s [5.70a]
and
. _ . m, ]
S| do @RS L = g [5.70b] -
spin 2[ + 1

2. The same result can be obtained by operator methods. A vector operator V has 1
three components (V,, V,, V) along three orthogonal axes, where V., V, |
and V, are operators which transform under rotations like the components of
a vector. Thus, if V, = V - i is the component of V along the unit vector @ |
which defines the axis Ou, and if the unit vector @' defines the axis Ou’ !
obtained from Ou by performing the rotation ®, the transform of V,, under |
the rotation 9 must be the component V. = V - 0’ of V along @'. It may
be shown that the components V., V,, V, ot a vector operator \Y
satisfy the commutation relations

[Fes Vil = 0, [F,, Vil = —ihVey  [Fes Vi = 10V
[Fes Vol = 1AV, (7> V] =0, [F., V,] = —ihV,, [5.71]
[F,, V.= —ihV,, [y, Va] =1V [Fos Vol =0
The operators L, S and J are examples of vector operators. Using [5.71] and
the commutation relations for the components of J, namely
(Foo F) =i, [T, Fod = e (%, % = ihf, [5.72]
it may be shown after some manipulation that a vector operator V satisfies the

equations
JxV+Vx]J=2hV [5.73]

and
[J2, [J2 V11 = 263(J*V + VI - 45V - D [5.74]
The matrix element of the left-hand side of the identity [5.74] with respectto |
states having the same value of J vanishes, so that P
{Isjm;|J*V + V]?|isjm;) = 2(sim;|(V + DI|lsim;) [5.75] |

_\___/
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from which we have .
i+ DR¥isim;[Vlisjm;) = (Usjmy|(V - D lisjm;) s.76) W

This relationship can also be obtained by using the Wigner—Eckart theorem
discussed in Appendix 4.

Setting V = S in [5.76] and taking the =z component, we have
G+ l)ﬁz(lsjmj\Slesjmj) = (Isjm;|(S - ] )T\ lsim)
= miilsymyS - J|lsim;) [5.77]

Since S - J = (J* + 8% — L?)/2, the matrix element of S, is

| ) _ G+ D +s¢s+ D=+ 1)
(Isjm;|S |lsjm;) = m %G+ 1) } (5.78]

which agrees with [5.70] when s = 1/2 and j = [ = 1/2. The energy shift due
to the magnetic field is seen from [5.68] and [5.70] (or [5.78]) to be proportional
to upPB,m; and may be written as

AEmi- = g“B%zﬁj ‘.5'79]

where g is called the Landé g factor and is given by
G+ D +ss+ 1) I+ 1

% =1+ — 5.80;
7 ¢ 2j(G+ D [5-80]
Since in our case s = 1/2 we have
‘ 2+2 |
| = B,m; =1+ 1/2
; A = g e /
__ 2 B =1-1/2 |5.81]
- 2] + 1 1u'BJ =M s ] = .

[ The total energy of the level with quantum numbers 1, j, m; of a hydrogenic
[ atom in a constant magnetic field is therefore

| ! Ey;m = E, + AE,; + AE, 15.82]

where E,, is the non-relativistic energy [3.29] [with u = m], AE, ; is the fine
] structure correction [5.28] and AE,, is the correction due to the {(weak)
magnetic field.

The splitting of levels, 8E, corresponding to the ‘anomalous’ Zeeman effect
discussed above is illustrated in Fig. 5.10. We remark that since the splitting
of the levels is not the same for each multiplet, there will be more lines in
this case than the three lines (Lorentz triplet) corresponding to the normal
Zeeman effect. This is shown in Fig. 5.11, where we display the allowed
transitions (cofresponding to Al = *1 and Am; = 0, 1) between the n = 2
and n = 1 levels of atomic hydrogen occurring in the presence of a weak

'. ! magnetic field.
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np ¥z 6

np.,z-——< 8E,, = i— PaB,

5.10 Splitting of nps,, and np,,; levels of atemic hydrogen in a weak magnetic field.

m;

3/2

1/2

2par
—1/2

-3/2

1/2

2p1y ———<_ —1/2

F ¥ \ i Y 1/2

1842

Yy

A ‘ L —1/2

5.11 In electric dipole transitions between the n = 2 and n = 1 levels of hydrogen, in a weak
‘ magnetic field, four lines result from the 2p;, — 1s,,, transitions and six lines from the
i 2ps;» — ls,,; transitons. |
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;53 The Starh effect
. m m, m+2m,
E} g
; 1 1/2 2 "
! 0 1/2 1
J
|
| - 1 1/2 0
4 — Bz 1 ~1/2 0
i 2p1s2
. —1/2
0 ~1/2 -1
| —3/2
i
’ -1 —1/2 -2

;

i 5.12 The energy of the levels of a hydrogen atom in a magnetic field are a smooth function of ,.
i For small %_, the splitting is uneven (the anomalous Zeeman effect), but for large A, , the splitting
’ is even and only three lines are seen (Paschen—Back effect). A schematic diagram is shown for the 2p

; levels.

i As the magnitude of the magnetic field %, increases from the weak field to the
strong field limit, the energy changes smoothly. This is depicted in Fig. 5.12 for

! the 2p states of atomic hydrogen.

| 5.3 THE STARK EFFECT

‘o The effect of static electric fields on the spectrum of hydrogen and other atoms

| was studied by J. Stark and also by A. Lo Surdo in 1913. The splitting of
F spectral lines observed has become known as the § tark effect. We shall assume
| that the external electric field is constant over a region of atomic dimensions and
| is directed along the Z axis. We also suppose that the electric field strength ‘€ is
4 large enough for fine structure effects to be unimportant [7]. The Hamiltonian
H, for the unperturbed hydrogenic atom, given by [5.3] (we neglect reduced
1 mass effects) is therefore modified by the addition of the perturbation

H =¢€z [5.83]
i where we recall that —e is the charge of the electron. Since H' does not depend

on the electron spin we shall use for the zero-order wave functions the

i [7] This is a correct assumption for electric field strengths usually encountered, which are of the
4 order of 107 V/m. On the other hand, the treatment given here must be modified for electric
' fields ¢ < 10° V/m, since in this case the Stark splittings are of the same order of magnitude as

‘I the fine structure splittings studied in Section 5.1.
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Schrédinger hydrogenic wave functions ¢.,,,(r) where we have set m = m; [3]in
order to simplify the notation.

Linear Stark effect

Since the ground state (100) is non-degenerate, we see from [2.308] and [5.83]
that the first-order correction to its energy is given by

EL, =e€ (W100/2|¥100)

e € J |¢’100(1’)|22 dr [5.84]

Now our discussion at the end of Section 3.3 showed that the hydrogenic wave
functions i,,,,(r) have a definite parity (even when the orbital quantum number /
is even, odd when [ is odd). On the other hand the perturbation [5.83] is an odd
operator under the parity operation since it changes sign when the coordinates
are reflected through the origin. Thus we have

(dlnlmlz‘lvbnlm> =0 [585]

since the matrix element (W, |2 Y involves the product of the even function
|thm(r)|? times the odd function 2 under the parity operation. In particular, we
see from [5.84] and [5.85] that E{}, = 0, so that for the ground state there is no
energy shift that is linear in the electric field €. Remembering that a classical
system having an electric dipole moment D will experience in an electric field 8
an energy shift of magnitude —D - €, and noting that —ez is the z component of
the electric dipole moment operator in our case, wWe see that atomic hydrogen in
the ground state cannot possess a permanent electric dipole moment (energy
change proportional to €).

Let us now examine the Stark effect on the first excited level (n = 2) of the
hydrogen atom. Since we assume that ¢ is large enough for fine structure effects
to be neglected we may consider the unperturbed system in the n = 2 level to be
fourfold degenerate, the four eigenfunctions

200 5 Y205 2115 Y11 [5.86]

corresponding to the same unperturbed energy E, ;= —mc?a®/8 (see [3.30]).
In principle we should therefore solve a homogeneous system {2.328] of four
equations. However, we have already shown in our discussion of selection rules
for electric dipole transitions (see Section 4.5) that matrix elements of the form

(nimlzln’lI'm’) vanish unless m = m' and [ =[x 1. Thus the only non-
vanishing matrix elements of the perturbation [5.83] are those conn%:(n\gggéi

2s (200) and 2po (210) states, and the linear homogeneous equations [2.
reduce to a set of two equations which we write in matrix form as

—E® His\ (a1 5
(B M (e) o sel

R
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with ”
| Hip = Hy = € f dro®aboetn) dr 508

The reduction of the original homogeneous system of four equations to the
two equations [5.87] may also be obtained easily by noting that (i) the operator
H' commut€s with L_, the 2 component of the angular momentum, so that
H'only contects states with the same value of the quantum number m and

. (i) H' is odd under the parity operation.
| rix element fj; can be evaluated by using the hydrogenic wave

1 The ma ! )
functions gjven in Table 3.1 of Chapter 3. Since z = r cos 8, we have

A Zr Zr i 2m
' _ ———— d 3 —— 1 [ _Zr/ao 1 2
Hip = e 16mag L " (ao) ( Zao)e Jo d6sin § cos™ 6 L dé

AN Zr Zr\ _
j o d E N inkdl ] — — Zr/ag
—e® saS-’Jo o (ao)( 2ao)°

- _ € GO,/Z ' [5.89]
3¢

* and Hb, = H!, since Hi, is real. Thus the two roots of the determinantal

equation " :
| ~E Hi, .

are given bY .
. EWY = +[H{,| = £3e € ay/Z [5.91]
I Upon returPing to [5.87] we see that for the lower root E{Y = —3¢ € ao/Z one

has ¢, = ¢z The corresponding normalised eigenstate ¢, is given by
| 1
A U= ﬁ (Y200 + t210) [5.92a]
V The second IOt E(M = +3¢ € ay/Z yields ¢; = —¢; and a normalised eigen-
' state .

— (¥200 — Y210) [5.92b]

I ‘7[’2 = \/5

It should Pe€ emphasised that the states [5.92] are neither eigenstates of the
parity operator> nor of L%, so that neither parity nor [ is a ‘good’ quantum
number in this case. On the other hand, m is a good quantum number because
| H' commut€Ss with L, (that is, the system is invariant under rotation about the 2
axis). We als0 remark that the wave number shifts 87 corresponding to the

energy corf ection E®V are given by

|
| {
| B3eay ¢ €
§p=*+—— — = +12.8{—1}107" ecm™! .

} 7 7 128‘2 107" cm [5.93]
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| Wave function
m=10 1
4 degenerate states I=0,m=0 pd V2 (Y00 =~ ¥210)

I=Lm=0,%1 -

/ a—

<———= m=2x1 W1+t
~
~
~
~
~ m=

1
0 V“j‘(d’zoo + ¥310)

5.13 Splitting of the degenerate n = 2 levels of atomic hydrogen due to the linear Stark effect.

so that rather strong fields (of the order of 107 V/m in Stark’s experiments) are
required to demonstrate the effect.

The splitting of the degenerate n = 7 levels of atomic hydrogen due to the
linear Stark effect is illustrated in Fig. 5.13. The degeneracy is partly removed
by the perturbation, the energies of the 2p.; (i.e. 211 and 21 — 1) states
remaining unaltered. Thus the level n = 2 splits in a symmetrical way into three
sublevels, one of which (corresponding to m = +1) is twofold degenerate.

At this point it is worth recalling again that a classical system having an
electric dipole moment D will experience in an electric field € an energy shift
—D - €. This suggests that the hydrogen atom in the degenerate unperturbed
states n = 2 behaves as though it has a permaneni electric - dipole moment
(independently of the value of ), of magnitude 3eay, which can be orientated in
three different ways (that is, gives rise to spatial quantisation) in the presence of
the field: one state (i) parallel to the field €, one state (if/2) antiparallel to €,
and two states with no component along the field.

On the other hand, we found above that for the hydrogen ground state, which
is non-degenerate and hence is an eigenstate of the parity operator, there 1s no
energy shift linear in the electric field strength, and hence no permanent electric
dipole moment. This conclusion may readily be generalised. Indeed, apart from
tiny effects which we shall not consider here [8] all the systems studied in this
book may be described by Hamiltonians which are unaffected by the parity
operation (that is, the reflection of the coordinates of all the particles through
the origin) and therefore any non-degenerate state of such systems has a definite
parity (even or odd). Now for a system containing N particles of charges e;

Gi=1,2,...N) and coordinates r;, the electric-dipole moment operator
]\; ’
D= er; | [5.94]
=1 \

is odd under the parity operation, so that its expectation value in a state of given
parity is zero. As a result, systems in non-degenerate states cannot have permanent
electric dipole moments. Note, however, that if we have a positive ion A™ located
at the position r; and a negative ion B~ at the position r;, the system (A"B7)

(8] Parity non-conserving effects occur in the so-called weak interactions, which are responsible for
weak decay processes of (elementary) particles, such as those observed in beta décay.
\_/‘
222



does possess an electric dipole moment. This does not contradict the previous
argument since the configuration for which A* is at r; and B~ at r, has the same
energy as the first arrangement and the system is necessarily degenerate, For the
same reason, when atoms are bound together, the resulting molecules may
possess permanent electric dipole moments [9].

Another remark concerns our use of degenerate perturbation theory for the
treatment of the Stark effect on the n = 2 levels. As we know from our
discussion in Section 5.1 there are small effects (fine structure, Lamb shift)
which remove some of the degeneracies of this level, so that the situation will
then correspond to a near-degenerate case. We shall-not treat this problem in
detail [10] but consider instead the simple model problem in which two
unperturbed states gbio) and aﬁ%o) do not correspond exactly to the same
unperturbed energy E (E, -, in our case) but to energies given respectively by
E® =E9 — ¢ and E® = E9 + ¢, which differ by a small amount 2e.
Instead of solving an equation of the type [5.87] we must now solve the matrix

equation
E® — ¢ —E Hp | c1
(Hél E(O) + & — E) (o) =0 l-5l95]

where Hi{, = Hj; is given by [5.88]. Thus we have
E = EQ x [(H},)? + ]2 [5.96)

It is apparent from this result that for very weak fields (such that [H ;| < &
and the Stark splitting is small with respect to fine structure effects), there is no
linear Stark effect. On the other hand, for strong field strengths ¢ such that
|H{,| > ¢ we retrieve the results found above by using degenerate perturbation
theory (linear Stark effect). In what follows we shall continue to assume that the
field strength % is large enough for the fine structure effects to be neglected.

The splitting of the n = 3 level due to the linear Stark effect may be treated in
a way similar to the n = 2 case analysed above. It is found (Problem 5.4) that
this level is split into five equally spaced levels, as shown in Fig. 5.14.

Also displayed in Fig. 5.14 are the radiative transitions between the levels
n = 2 and n = 3 (corresponding to the spectral line H,) of atomic hydrogen in
the presence of an electric field. The selection rules with respect to the magnetic
quantum number m are the same as those we obtained in Chapter 4 without an

external field. That is
Am=0,=*1 15.97]

The Am = 0 transitions are said to correspond to 7 components, and the
Am = #*1 to ¢ components.

[9] The kind of degeneracy to which we have referred is often removed in an ‘exact’ calculation of
molecular ground states/ However, because the splittings involved are very small, in any
experiment an average is taken over the ground and neighbouring states, of different parities,
resulting in an effective permanent electric dipole moment.

[10] A comprehensive treatment may be found in Bethe and Salpeter (1957).
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5.14 Splitting of the # = 3 and n = 2 levels of hydrogen due to the linear Stark effect. The various
possible transitions are shown, those with Am = 0 correspond to 7 lines and those with Am = *110

a lines.

On the other hand, since / is not a good quantum number in the presence of
an external electric field, it is clear that the selection rules concerning / must be
modified. In particular, because the operator [5.83] has a non-vanishing matrix
element between the 2s and 2pq states, these two states are ‘mixed’ by the
perturbation H' with the result that the metastable 2s state is ‘contaminated’ by
the unstable 2p state. Thus a radiative transition from the 2s state to the 1s state
can be induced by an external electric field [11], so that the lifetime of the 2s
state is considerably shortened by comparison with its value (1/7 s) in the
absence of electric field.

In order to examine in more detail this process, which is called ‘quenching of
the metastable 2s state’, let us assume that at the initial time z = 0 the hydrogen
atom is in the 2s (200) state. We then apply a constant electric field of strength €
directed along the Z axis, and use the results [5.91] and [5.92] to write the
time-dependent wave function of the atom at t > Qas~_

V(r, ) = cpp(r)e VPOETADE 4 cpy(rye” M ETAE (5,98

[11] Itis worth noting that this external electric field need not be a static field, as in the case studied
here, but can also be a time-dependent (oscillating) field.
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where E,., = -mca®/8 and AE = |Hjz| = 3¢ € apis the absolute value of the ., !

(first-order) energy shift. The coefficients ¢, and ¢, are easily found from t
initial condition

W(r, t = 0) = ¢po(r) [5.99]

Using [5.92] and [5.99], we find that ¢; = ¢; = 2 Y2 5o that

1 1 . .
Wir, 1) = ——,—z- dn(r)e” @R En-—AER 4 _/__ dlz(r)e*(z/f:)(ﬁmHAb)t
v

= ':gbzog(r) COS(‘ATE l) + i{,bzu)(l') Sin('éEE‘ t)]e_(i’”’)E"'" [5.100]

Thus the atom oscillates between the 200 (2s) and 210 (2p,) states, with a period

h
T = N | [5.101]

For example, in the case of an electric field of strength € = 107 V/m, we find
from [5.101] that T = 1.3 x 107'* s which is much shorter than the time
7= 1.6 x 107° s corresponding to the radiative transition 2p—1s (i.e. the
lifetime of the 2p state in the absence of external field). As a result, the average
population of both states 2s and 2p, is nearly equal during the entire decay time.
This conclusion is easily seen to be true for initial conditions in which the atom
is initially (at ¢ = 0) in an arbitrary superposition of the 2s and 2p, states
(Problem 5.5). Thus, in the presence of a strong electric field the radiative
transitions 2s—1s and 2p—1s have the same transition probability per unit time,
which is equal to 1/27. It is apparent from this discussion that in general, an
external electric field will be able to induce n's — ns radiative transitions.

Quadratic Stark effect

We have shown above that for the ground state (100) of hydrogenic atoms there
is no linear Stark effect. In order to investigate the effect of the perturbation
[5.83] on that state we must therefore consider the second-order term of the
perturbation series. Using [2.319] we see that in our case it reads

EI(%()) — 22 ,,;1 Klﬁgr:w_‘l/féooﬂ 15.102]
Im n

where the sum implies a summation over the discrete set together with an
integration over the continuous set of hydrogenic eigenfunctions. It is clear from
[5.102] that the ground/ state energy will be lowered by the quadratic Stark ef-
fect, since the energy differences E, — E (n = 2) are always negative. In fact,
we may readily obtain a lower limit for E} by replacing in [5.102] the energy
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differences E, — E, by E, — E,. That is,
g2 > il Y100}

! E,—E
1
> —e’ g a2l G100 5.103
BT E & [mmlelineol? o [5:103]
Im

The summation on the right of [5.103] may now be performed as follows. We
first note that because {Yno0l2|¥100) = 0 we may write

> Khuimlelthion)® = > (Wil 2100

n#l nl,m
Iym K
=2 {11002 Wnime) (Yrutm| 2| ¥100) [5.104]
n,l.m

Using the completeness of the hydrogenic states, namely

we have
; (0100| 2| Ut (Wi | 21 100) = (Pr100/2%|¥r100)
= (22)100 [5-106]
But
2 2 2 1 5 a
(%100 = (x100 = (¥ Y100 = § (r*)100 = '27 [5-107]

so that from [5.103]-[5.107] and [3.29] we have
8
E&) > ~3 (47eg) =3 €° [5.108]

It is possible to obtain in a straightforward way another estimate for E&
(Problem 5.6):
@
z*
The exact evaluation of the expression [5.102] is more tedious and we shall

not discuss it in detail here. One finds (Bethe and Salpeter, 1957) that

3

ER, = —2.25(4meo) %} 82

ER) ~ —2(4mee) =3 € [5.109]

.2
= —3.71 X 10_41( )joule [5.110]

Z4
/—_“

226




5.3 - The Stark effect
It is worth noting that about one-third of the result [5.110] arises from the
contribution of the continuum in the summation [5.102). We also remark that
the quadratic Stark effect given by [5.110] is generally very small, being
approximately 0.02 cm ! for atomic hydrogen in the case of a field strength
€ = 108 volt/metre.

Upon differentiation of the expression [5.102] with respect to the electric field
strength, we obtain for the magnitude of the dipole moment the result

IESG;
D=- ajé”‘) = @& [5.111]
where
_ a2 K haml2| Y1000
= 5.1
&= 2 %; i [5.112]

is called the dipole polarisability of the atom in the state (100). We see from
[5.111] that D is proportional to €, so that we have an induced dipole moment. We
also note from [5.102] and [5.112] that

1

E#) = 3 @&’ [5.113]

and the result [5.110] shows that
3
- ap
a = 450(47T80) EI

= 7.42 x 107" Z7* F m? [5.114]

The foregoing discussion of the quadratic Stark effect has been limited to the
ground state of hydrogenic atoms, for which it is the first non-vanishing term of
the perturbation series. Similar calculations may be carried out for excited
states, where the quadratic Stark effect is a correction to the linear Stark effect
studied above. This correction is in general quite small. For example, in the case
of the H, line, where the separation of the outermost components is about
200 cm ™! for a field strength of 4 x 107 volt/metre, the corresponding (red)

shift due to the quadratic Stark effect is only 1 cm™'.

lonisation by a static electric field

So far we have used perturbation theory to study the energy shifts and the
spectral lines of hydrogenic atoms in the presence of a static electric field. We
shall now consider another effect due to the presence of an external electric field,
namely the removal of the electron from the atom.

To see how this comes abeut, we first note that the total potential energy V of
the electron is obtained by adding the potential energy e ‘4 z arising from the
external field (see [5.83]) to the Coulomb potential —Ze?/(4me)r of the nucleus,
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Thus
Ze®

——(—4-1;(;‘)—'.4-6%2 [5115]

V =
A schematic drawing of V is shown in Fig. 5.15 as a function of z, for x and y
fixed. It is apparent that the nucleus is not the only place at which V has a
minimum, since V can become even more negative if 2 is negative enough, that
is at large enough distances of the atom in the direction of the anode. Thus the
potential V has two minima, one at the nucleus and the other at the anode,
separated by a potential barrier. The electron, which is initially in a bound state
of the atom, has therefore a finite probability of ‘escaping’ from the atom by
means of the tunnel effect, and being accelerated toward the anode, so that
ionisation will occur. '

This possibility of ionisation by the electric field was first pointed out by
J. Oppenheimer in 1928. Experimentally it can be observed when the external
electric field is very strong and (or) for levels with high principal quantum
number such that the radius of the electron orbit is large. It is then seen that the
spectral lines are weakened because of the competition between the radiative
transitions and the ionisation process. Moreover, in the presence of an external

Y
V (Xos Yos 2)

Ny

Ze?
@me) V(G + 3w+ 25

o ~
5,15 The potential V experienced by an electron interacting with a nucleus of charge (Z¢);-in a_
uniform electric field of strength €, as a function of z, for x = %o and v = y, fixed. o
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electric field the lifetime of the discrete levels is decreased because of the ‘tunnel
effect’, so that the width of the spectral lines is increased. This is known as Starh
broadening. In particular, the ground state itself is no longer a stationary state,
but becomes a metastable state when an external electric field is applied, and the
perturbation series is found to diverge. However, if the electric field is not too
strong, the ground state is stable on a very large time scale, and the predictions
of the first few terms of the perturbation series agree very well with experiment,

54 THE LAMB SHIFT

We have seen in Section 5.1 that, according to the Dirac theory, energy levels of
one-electron atoms with the same value of the quantum number ; but different
values of { should coincide. We also pointed out at the end of that section that in
trying to resolve the fine structure of hydrogenic atoms by optical measure-
ments, several investigators had reported small discrepancies between the
observed spectra and the Dirac theory. In particular, W. V. Houston in 1937
and R. C. Williams in 1938 carried out experiments which were interpreted by
S. Pasternack (1938) as showing that the 2s, /> and 2p, s levels did not coincide,
but that there existed a slight upward shift of the 2s, /; level of about 0.03 cm '
However, the experimental attempts to obtain accurate information about IJ
fine structure of atomic hydrogen (and in particular about the lines of th
Balmer series) were frustrated by the broadening of the spectral lines due mainly
to the Doppler effect. In fact other spectroscopists disagreed with the results of
Houston and Williams, and found no discrepancy with the Dirac theory.
The question was settled in 1947 by W. E. Lamb and R. C. Retherford who
performed a brilliant experiment which we shall now briefly describe. Instead of
attempting to resolve the fine structure of hydrogen by investigating its optical
spectrum, Lamb and Retherford used microwave techniques [12] to stimulate a
direct radio-frequency transition between the 2s,,; and 2p,,; levels. As we noted
in Section 4.5 there is no selection rule on the principal quantum number n for
electric dipole transitions. In particular, these transitions can occur between
levels having the same principal quantum number. This fact was pointed out as
early as 1928 by Grotrian, who suggested that it should be possible with radio
waves to induce such transitions among the excited states of the hydrogen atom.
For example, in the case of the transition 2s,,,—2ps/2, the energy separation
SE = 4.52 x 107% eV = 0.365 cm ™! which we obtained in [5.32] corresponds
to a wavelength of 2.74 cm or a frequency of 10949 MHz. Because the
frequencies of radio waves are much smaller than those corresponding to optical
lines (such as the H, line), the Doppler broadening, which is proportional to the
frequency (see [4.145]) is considerably reduced in radio-frequency experiments,
and could in fact be neglected in the experiment of Lamb and Retherford. Of
course, since the frequencies of radio waves are small, the transition rates for
spontaneous emission, which are proportional to 13 (see [4.71]) are very smalli,

[12] A detailed account of microwave spectroscopy may be found in Townes and Schawlow (1955),
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